Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sufi M. Thomas is active.

Publication


Featured researches published by Sufi M. Thomas.


Clinical Cancer Research | 2006

Mutant Epidermal Growth Factor Receptor (EGFRvIII) Contributes to Head and Neck Cancer Growth and Resistance to EGFR Targeting

John C. Sok; Francesca M. Coppelli; Sufi M. Thomas; Miriam N. Lango; Sichuan Xi; Jennifer L. Hunt; Maria L. Freilino; Michael W. Graner; Carol J. Wikstrand; Darell D. Bigner; William E. Gooding; Frank Furnari; Jennifer R. Grandis

Purpose: Epidermal growth factor receptor (EGFR) is overexpressed in head and neck squamous cell carcinoma (HNSCC) where expression levels correlate with decreased survival. Therapies that block EGFR have shown limited efficacy in clinical trials and primarily when combined with standard therapy. The most common form of mutant EGFR (EGFRvIII) has been described in several cancers, chiefly glioblastoma. The present study was undertaken to determine the incidence of EGFRvIII expression in HNSCC and the biological consequences of EGFRvIII on tumor growth in response to EGFR targeting. Experimental Design: Thirty-three HNSCC tumors were evaluated by immunostaining and reverse transcription-PCR for EGFRvIII expression. A representative HNSCC cell line was stably transfected with an EGFRvIII expression construct. EGFRvIII-expressing cells and vector-transfected controls were compared for growth rates in vitro and in vivo as well as chemotherapy-induced apoptosis and the consequences of EGFR inhibition using the chimeric monoclonal antibody C225/cetuximab/Erbitux. Results: EGFRvIII expression was detected in 42% of HNSCC tumors where EGFRvIII was always found in conjunction with wild-type EGFR. HNSCC cells expressing EGFRvIII showed increased proliferation in vitro and increased tumor volumes in vivo compared with vector-transfected controls. Furthermore, EGFRvIII-transfected HNSCC cells showed decreased apoptosis in response to cisplatin and decreased growth inhibition following treatment with C225 compared with vector-transfected control cells. Conclusions: EGFRvIII is expressed in HNSCC where it contributes to enhanced growth and resistance to targeting wild-type EGFR. The antitumor efficacy of EGFR targeting strategies may be enhanced by the addition of EGFRvIII-specific blockade.


Clinical Cancer Research | 2009

HGF and c-Met Participate in Paracrine Tumorigenic Pathways in Head and Neck Squamous Cell Cancer

Lynn M. Knowles; Laura P. Stabile; Ann Marie Egloff; Mary E. Rothstein; Sufi M. Thomas; Christopher T. Gubish; Edwina C. Lerner; Raja R. Seethala; Shinsuke Suzuki; Kelly Quesnelle; Sarah Morgan; Robert L. Ferris; Jennifer R. Grandis; Jill M. Siegfried

Purpose: We determined hepatocyte growth factor (HGF) and c-Met expression and signaling in human head and neck squamous cell carcinoma (HNSCC) cells and primary tissues and tested the ability of c-Met tyrosine kinase inhibitors (TKI) to block HGF-induced biological signaling. Experimental Design: Expression and signaling were determined using immunoblotting, ELISA, and immunohistochemistry. Biological end points included wound healing, cell proliferation, and invasion. c-Met TKIs were tested for their ability to block HGF-induced signaling and biological effects in vitro and in xenografts established in nude mice. Results: c-Met was expressed and functional in HNSCC cells. HGF was secreted by HNSCC tumor-derived fibroblasts, but not by HNSCC cells. Activation of c-Met promoted phosphorylation of AKT and mitogen-activated protein kinase as well as release of the inflammatory cytokine interleukin-8. Cell growth and wound healing were also stimulated by HGF. c-Met TKIs blocked HGF-induced signaling, interleukin-8 release, and wound healing. Enhanced invasion of HNSCC cells induced by the presence of tumor-derived fibroblasts was completely blocked with a HGF-neutralizing antibody. PF-2341066, a c-Met TKI, caused a 50% inhibition of HNSCC tumor growth in vivo with decreased proliferation and increased apoptosis within the tumors. In HNSCC tumor tissues, both HGF and c-Met protein were increased compared with expression in normal mucosa. Conclusions: These results show that HGF acts mainly as a paracrine factor in HNSCC cells, the HGF/c-Met pathway is frequently up-regulated and functional in HNSCC, and a clinically relevant c-Met TKI shows antitumor activity in vivo. Blocking the HGF/c-Met pathway may be clinically useful for the treatment of HNSCC.


Cancer Research | 2004

Src family kinases mediate epidermal growth factor receptor ligand cleavage, proliferation, and invasion of head and neck cancer cells

Qing Zhang; Sufi M. Thomas; Sichuan Xi; Thomas E. Smithgall; Jill M. Siegfried; Joanne Kamens; William E. Gooding; Jennifer R. Grandis

Head and neck squamous cell carcinomas (HNSCCs) are characterized by up-regulation of the epidermal growth factor receptor (EGFR). We previously reported that a gastrin-releasing peptide/gastrin-releasing peptide receptor (GRP/GRPR) autocrine growth pathway is activated early in HNSCC carcinogenesis. GRP can induce rapid phosphorylation of EGFR and p42/44 mitogen-activated protein kinase (MAPK) activation in part via extracellular release of transforming growth factor α (TGF-α) by matrix metalloproteinases (MMPs). It has been reported that Src family kinases are activated by G-protein–coupled receptors (GPCRs), followed by downstream EGFR and MAPK activation. To further elucidate the mechanism of activation of EGFR by GRP in HNSCC, we investigated the role of Src family kinases. Blockade of Src family kinases using an Src-specific tyrosine kinase inhibitor A-419259 decreased GRP-induced EGFR phosphorylation and MAPK activation. GRP also failed to induce MAPK activation in dominant-negative c-Src–transfected HNSCC cells. Invasion and growth assays showed that c-Src was required for GRP-induced proliferation or invasion of HNSCC cells. In addition to TGF-α release, GRP induced amphiregulin, but not EGF, secretion into HNSCC cell culture medium, an effect that was blocked by the MMP inhibitor marimastat. TGF-α and amphiregulin secretion by GRP stimulation also was inhibited by blockade of Src family kinases. These results suggest that Src family kinases contribute to GRP-mediated EGFR growth and invasion pathways by facilitating cleavage and release of TGF-α and amphiregulin in HNSCC.


Cancer Research | 2006

Cross-talk between G Protein–Coupled Receptor and Epidermal Growth Factor Receptor Signaling Pathways Contributes to Growth and Invasion of Head and Neck Squamous Cell Carcinoma

Sufi M. Thomas; Neil E. Bhola; Qing Zhang; Sarah Contrucci; Abbey L. Wentzel; Maria L. Freilino; William E. Gooding; Jill M. Siegfried; Daniel C. Chan; Jennifer R. Grandis

G protein-coupled receptors (GPCR) and the epidermal growth factor receptor (EGFR) are often both overexpressed and contribute to the growth of cancers by activating autocrine pathways. GPCR ligands have been reported to trigger EGFR signaling via receptor cross-talk in cancer cells. Here, we show that GPCR ligands prostaglandin E2 (PGE2) and bradykinin (BK) activate EGFR signaling. Inhibition of EGFR using several strategies, including small-molecule inhibitors and an EGFR-specific antibody, resulted in partial attenuation of signaling downstream of EGFR. PGE2 and BK triggered EGFR signaling by increasing selective autocrine release of transforming growth factor-alpha (TGF-alpha). Inhibition of tumor necrosis factor-alpha-converting enzyme abrogated BK- or PGE2-mediated activation of EGFR signaling. Both PGE2 and BK stimulated head and neck squamous cell carcinoma (HNSCC) invasion via EGFR. Treatment of HNSCC cells with the BK antagonist CU201 resulted in growth inhibition. The combination of CU201 with the EGFR small-molecule inhibitor erlotinib resulted in additive inhibitory effects on HNSCC cell growth in vitro. Inhibition of the PGE2 synthesis pathway with sulindac induced HNSCC cytotoxicity at high doses (EC(50), 620 micromol/L). However, combined inhibition of both EGFR with the tyrosine kinase inhibitor erlotinib and GPCR with sulindac at low doses of 6 and 310 micromol/L, respectively, resulted in synergistic killing of HNSCC tumor cells. Combined blockade of both EGFR and GPCRs may be a rational strategy to treat cancers, including HNSCC that shows cross-talk between GPCR and EGFR signaling pathways.


Clinical Cancer Research | 2007

Selective Inhibition of ADAM Metalloproteases as a Novel Approach for Modulating ErbB Pathways in Cancer

Jordan S. Fridman; Eian Caulder; Michael J. Hansbury; Xiangdong Liu; Genjie Yang; Qian Wang; Yvonne Lo; Bin-Bing Zhou; Maxwell Pan; Sufi M. Thomas; Jennifer R. Grandis; Jincong Zhuo; Wenqing Yao; Robert C. Newton; Steven M. Friedman; Peggy Scherle; Kris Vaddi

Purpose: ErbB receptor signaling pathways are important regulators of cell fate, and their dysregulation, through (epi)genetic alterations, plays an etiologic role in multiple cancers. ErbB ligands are synthesized as membrane-bound precursors that are cleaved by members of the ADAM family of zinc-dependent metalloproteases. This processing, termed ectodomain shedding, is essential for the functional activation of ErbB ligands. Recent studies suggest that elevated levels of ErbB ligands may circumvent the effectiveness of ErbB-targeted therapeutics. Here, we describe the discovery and preclinical development of potent, selective inhibitors of ErbB ligand shedding. Experimental Design: A series of biochemical and cell-based assays were established to identify selective inhibitors of ErbB ligand shedding. The therapeutic potential of these compounds was assessed in multiple in vivo models of cancer and matrix metalloprotease–related toxicity. Results: INCB3619 was identified as a representative selective, potent, orally bioavailable small-molecule inhibitor of a subset of ADAM proteases that block shedding of ErbB ligands. Administration of INCB3619 to tumor-bearing mice reduced ErbB ligand shedding in vivo and inhibited ErbB pathway signaling (e.g., phosphorylation of Akt), tumor cell proliferation, and survival. Further, INCB3619 synergized with clinically relevant cancer therapeutics and showed no overt or compounding toxicities, including fibroplasia, the dose-limiting toxicity associated with broad-spectrum matrix metalloprotease inhibitors. Conclusions: Inhibition of ErbB ligand shedding offers a potentially novel and well-tolerated therapeutic strategy for the treatment of human cancers and is currently being evaluated in the clinic.


Clinical Cancer Research | 2008

Combined Inhibition of c-Src and Epidermal Growth Factor Receptor Abrogates Growth and Invasion of Head and Neck Squamous Cell Carcinoma

Priya Koppikar; Seung-Ho Choi; Ann Marie Egloff; Quan Cai; Shinsuke Suzuki; Maria L. Freilino; Hiroshi Nozawa; Sufi M. Thomas; William E. Gooding; Jill M. Siegfried; Jennifer R. Grandis

Purpose: Increased expression and/or activation of epidermal growth factor receptor (EGFR) is associated with tumor progression and poor prognosis in many cancers, including head and neck squamous cell carcinoma (HNSCC). Src family kinases, including c-Src, mediate a variety of intracellular or extracellular signals that contribute to tumor formation and progression. This study was undertaken to elucidate the role of c-Src in the growth and invasion of HNSCC and to determine the effects of combined targeting of EGFR and Src kinases in HNSCC cell lines. Experimental Design: HNSCC cells were engineered to stably express a dominant-active form of c-Src and investigated in cell growth and invasion assays. The biochemical effects of combined treatment with the Src inhibitor AZD0530, a potent, orally active Src inhibitor with Bcr/Abl activity, and the EGFR kinase inhibitor gefitinib were examined, as well as the consequences of dual Src/EGFR targeting on the growth and invasion of a panel of HNSCC cell lines. Results: HNSCC cells expressing dominant-active c-Src showed increased growth and invasion compared with vector-transfected controls. Combined treatment with AZD0530 and gefitinib resulted in greater inhibition of HNSCC cell growth and invasion compared with either agent alone. Conclusions: These results suggest that increased expression and activation of c-Src promotes HNSCC progression where combined targeting of EGFR and c-Src may be an efficacious treatment approach.


Clinical Cancer Research | 2012

Targeting Stat3 abrogates EGFR inhibitor resistance in cancer.

Malabika Sen; Sonali Joyce; Mary C. Panahandeh; Changyou Li; Sufi M. Thomas; Jessica H. Maxwell; Lin Wang; William E. Gooding; Daniel E. Johnson; Jennifer R. Grandis

Purpose: EGF receptor (EGFR) is upregulated in most epithelial cancers where signaling through EGFR contributes to cancer cell proliferation and survival. The limited clinical efficacy of EGFR inhibitors suggests that identification of resistance mechanisms may identify new pathways for therapeutic targeting. STAT3 is upregulated in many cancers and activated via both EGFR-dependent and -independent pathways. In the present study, we tested the consequences of STAT3 inhibition in EGFR inhibitor–resistant head and neck squamous cell carcinoma (HNSCC) and bladder cancer models to determine whether STAT3 blockade can enhance responses to EGFR targeting. Experimental Design: pSTAT3 expression was assessed in human HNSCC tumors that recurred following cetuximab treatment. Cetuximab-sensitive and -resistant cell lines were treated with a STAT3 decoy to determine EC50 concentrations and the effects on STAT3 target gene expression by Western blotting. In vivo assays included evaluation of antitumor efficacy of STAT3 decoy in cetuximab-sensitive and -resistant models followed by immunoblotting for STAT3 target protein expression. Results: Targeting STAT3 with a STAT3 decoy reduced cellular viability and the expression of STAT3 target genes in EGFR inhibitor resistance models. The addition of a STAT3 inhibitor to EGFR blocking strategies significantly enhanced antitumor effects in vivo. Biopsies from HNSCC tumors that recurred following cetuximab treatment showed increased STAT3 activation compared with pretreatment biopsies. Conclusions: These results suggest that STAT3 activation contributes to EGFR inhibitor resistance both in HNSCC and bladder cancer where concomitant targeting of STAT3 may represent an effective treatment strategy. Clin Cancer Res; 18(18); 4986–96. ©2012 AACR.


Oncogene | 2005

Chemokine receptor 7 activates phosphoinositide-3 kinase-mediated invasive and prosurvival pathways in head and neck cancer cells independent of EGFR

Jun Wang; Xin Zhang; Sufi M. Thomas; Jennifer R. Grandis; Alan Wells; Zhuo (Georgia) Chen; Robert L. Ferris

Chemokine receptor 7 (CCR7) upregulation, which mediates immune cell survival and migration to lymph nodes, has recently been associated with nodal metastasis of squamous cell carcinoma of the head and neck (SCCHN). However, the mechanism of CCR7 in tumor progression, its downstream signaling mediators, and interactions with other pathways contributing to metastasis of SCCHN have not been determined. We hypothesized that inflammatory chemokine-mediated signals could also promote tumor proliferation and mitogenic effects. Functional assays showed that chemotaxis and invasion of metastatic SCCHN cells were dependent on phosphoinositide-3 kinase (PI3K) and its substrate, activated phospholipase Cγ-1. In addition, treatment of CCR7+ metastatic SCCHN cells with CCL19 (MIP-3β) showed rapid activation of the prosurvival, PI3K/Akt pathway. Transactivation of EGFR-mediated and mitogen-activated protein kinase signaling pathways, which can promote migration and survival in parallel, did not appear to contribute to the functional or biochemical effects of CCR7 stimulation. Thus, proinflammatory chemokine signals that mediate activation, trafficking and survival of tumor-infiltrating immune cells in the tumor microenvironment actually appear to induce signals for progression of cancer cells. The CCR7-mediated pathway in metastatic SCCHN cells functions independently of EGFR signal transduction and therefore may represent an additional target for therapeutic intervention to prevent tumor progression and metastasis.


Carcinogenesis | 2009

Guggulsterone enhances head and neck cancer therapies via inhibition of signal transducer and activator of transcription-3

Rebecca J. Leeman-Neill; Sarah Wheeler; Sufi M. Thomas; Raja R. Seethala; Daniel B. Neill; Mary C. Panahandeh; Eun-Ryeong Hahm; Sonali Joyce; Malabika Sen; Quan Cai; Maria L. Freilino; Changyou Li; Daniel E. Johnson; Jennifer R. Grandis

Treatment of human head and neck squamous cell carcinoma (HNSCC) cell lines with guggulsterone, a widely available, well-tolerated nutraceutical, demonstrated dose-dependent decreases in cell viability with EC(50)s ranging from 5 to 8 microM. Guggulsterone induced apoptosis and cell cycle arrest, inhibited invasion and enhanced the efficacy of erlotinib, cetuximab and cisplatin in HNSCC cell lines. Guggulsterone induced decreased expression of both phosphotyrosine and total signal transducer and activator of transcription (STAT)-3, which contributed to guggulsterones growth inhibitory effect. Hypoxia-inducible factor (HIF)-1alpha was also decreased in response to guggulsterone treatment. In a xenograft model of HNSCC, guggulsterone treatment resulted in increased apoptosis and decreased expression of STAT3. In vivo treatment with a guggulsterone-containing natural product, Guggulipid, resulted in decreased rates of tumor growth and enhancement of cetuximabs activity. Our results suggest that guggulsterone-mediated inhibition of STAT3 and HIF-1alpha provide a biologic rationale for further clinical investigation of this compound in the treatment of HNSCC.


Cancer Prevention Research | 2010

Epidermal Growth Factor Receptor Expression and Gene Copy Number in the Risk of Oral Cancer

Mohammed Taoudi Benchekroun; Pierre Saintigny; Sufi M. Thomas; Adel K. El-Naggar; Vassiliki Papadimitrakopoulou; Hening Ren; Wenhua Lang; You Hong Fan; Jianhua Huang; Lei Feng; J. Jack Lee; Edward S. Kim; Waun Ki Hong; Faye M. Johnson; Jennifer R. Grandis; Li Mao

Leukoplakia is the most common premalignant lesion of the oral cavity. Epidermal growth factor receptor (EGFR) abnormalities are associated with oral tumorigenesis and progression. We hypothesized that EGFR expression and gene copy number changes are predictors of the risk of an oral premalignant lesion (OPL) progressing to oral squamous cell carcinoma (OSCC). A formalin-fixed, paraffin-embedded OPL biopsy specimen was collected from each of 162 patients in a randomized controlled clinical trial. We assessed EGFR expression by immunohistochemistry with two methods: a semiquantitative analysis (145 evaluable specimens) and an automated quantitative analysis (127 evaluable specimens). EGFR gene copy number was assessed by fluorescence in situ hybridization (FISH) in a subset of 49 OPLs with high EGFR expression defined by the semiquantitative analysis. We analyzed EGFR abnormalities for associations with OSCC development. High EGFR expression occurred in 103 (71%) of the 145 OPLs and was associated with a nonsignificantly higher risk of OSCC (P = 0.10). Twenty (41%) of 49 OPLs assessed by FISH had an increased EGFR gene copy number (FISH-positive). Patients with FISH-positive lesions had a significantly higher incidence of OSCC than did patients with FISH-negative (a normal copy number) lesions (P = 0.0007). Of note, 10 of 11 OSCCs that developed at the site of the examined OPL were in the FISH-positive group, leaving only one FISH-negative OPL that did so (P < 0.0001). Our data indicate that an increased EGFR gene copy number is common in and associated with OSCC development in patients with OPLs expressing high EGFR, particularly OSCC developing at the site of a high-expression OPL; they also suggest that EGFR inhibitors may prevent oral cancer in patients with OPLs having an increased EGFR gene copy number. Cancer Prev Res; 3(7); 800–9. ©2010 AACR.

Collaboration


Dive into the Sufi M. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonali Joyce

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Wang

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge