Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suguru Okuda is active.

Publication


Featured researches published by Suguru Okuda.


Annual Review of Microbiology | 2011

Lipoprotein Sorting in Bacteria

Suguru Okuda; Hajime Tokuda

Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and β-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB

Suguru Okuda; Hajime Tokuda

Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detail. However, it remained unclear how Lol factors interact with each other to conduct very efficient lipoprotein transfer in the periplasm where ATP is not available. To address this issue, a photo-reactive phenylalanine analogue, p-benzoyl-phenylalanine, was introduced at various positions of LolA and LolB, of which the overall structures are very similar and comprise an incomplete β-barrel with a hydrophobic cavity inside. Cells expressing LolA or LolB derivatives containing the above analogue were irradiated with UV for in vivo photo-cross-linking. These analyses revealed a hot area in the same region of LolA and LolB, through which LolA and LolB interact with each other. This area is located at the entrance of the hydrophobic cavity. Moreover, this area in LolA is involved in the interaction with a membrane subunit, LolC, whereas no cross-linking occurs between LolA and the other membrane subunit, LolE, or ATP-binding subunit LolD, despite the structural similarity between LolC and LolE. The hydrophobic cavities of LolA and LolB were both found to bind lipoproteins inside. These results indicate that the transfer of lipoproteins through Lol proteins occurs in a mouth-to-mouth manner.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1

Shushi Nagamori; Pattama Wiriyasermkul; Meritxell Espino Guarch; Hirohisa Okuyama; Saya Nakagomi; Kenjiro Tadagaki; Yumiko Nishinaka; Susanna Bodoy; Kazuaki Takafuji; Suguru Okuda; Junko Kurokawa; Ryuichi Ohgaki; Virginia Nunes; Manuel Palacín; Yoshikatsu Kanai

Significance Although molecular identification of transporters in mammals seems almost settled, some long-proposed transporters still remain to be revealed. The second cystine transporter in renal cystine reabsorption is one of such transporters. Its genetic defect has been proposed to be responsible for a type of cystinuria distinct from that caused by the mutations of the already known cystine transporter. In this study, we have found a membrane protein SLC7A13 as the second cystine transporter with proposed characteristics, and provided a possible clue to the genetics of previously unidentified cystinuria. Intricate functional coupling of SLC7A13 with the nearby glutamate transporter is also proposed. We have solved long-lasting problems in renal cystine transport physiology and paradoxes regarding the unmatched distribution of cystine transporter components. Heterodimeric amino acid transporters play crucial roles in epithelial transport, as well as in cellular nutrition. Among them, the heterodimer of a membrane protein b0,+AT/SLC7A9 and its auxiliary subunit rBAT/SLC3A1 is responsible for cystine reabsorption in renal proximal tubules. The mutations in either subunit cause cystinuria, an inherited amino aciduria with impaired renal reabsorption of cystine and dibasic amino acids. However, an unsolved paradox is that rBAT is highly expressed in the S3 segment, the late proximal tubules, whereas b0,+AT expression is highest in the S1 segment, the early proximal tubules, so that the presence of an unknown partner of rBAT in the S3 segment has been proposed. In this study, by means of coimmunoprecipitation followed by mass spectrometry, we have found that a membrane protein AGT1/SLC7A13 is the second partner of rBAT. AGT1 is localized in the apical membrane of the S3 segment, where it forms a heterodimer with rBAT. Depletion of rBAT in mice eliminates the expression of AGT1 in the renal apical membrane. We have reconstituted the purified AGT1-rBAT heterodimer into proteoliposomes and showed that AGT1 transports cystine, aspartate, and glutamate. In the apical membrane of the S3 segment, AGT1 is suggested to locate itself in close proximity to sodium-dependent acidic amino acid transporter EAAC1 for efficient functional coupling. EAAC1 is proposed to take up aspartate and glutamate released into luminal fluid by AGT1 due to its countertransport so that preventing the urinary loss of aspartate and glutamate. Taken all together, AGT1 is the long-postulated second cystine transporter in the S3 segment of proximal tubules and a possible candidate to be involved in isolated cystinuria.


Journal of Biological Chemistry | 2009

Structural Investigation of the Interaction between LolA and LolB Using NMR

Shingo Nakada; Masayoshi Sakakura; Hideo Takahashi; Suguru Okuda; Hajime Tokuda; Ichio Shimada

Lipoproteins that play critical roles in various cellular functions of Gram-negative bacteria are localized in the cells inner and outer membranes. Lol proteins (LolA, LolB, LolC, LolD, and LolE) are involved in the transportation of outer membrane-directed lipoproteins from the inner to the outer membrane. LolA is a periplasmic chaperone that transports lipoproteins, and LolB is an outer membrane receptor that accepts lipoproteins. To clarify the structural basis for the lipoprotein transfer from LolA to LolB, we examined the interaction between LolA and mLolB, a soluble mutant of LolB, using solution NMR spectroscopy. We determined the interaction mode between LolA and mLolB with conformational changes of LolA. Based upon the observations, we propose that the LolA·LolB complex forms a tunnel-like structure, where the hydrophobic insides of LolA and LolB are connected, which enables lipoproteins to transfer from LolA to LolB.


Journal of Pharmacology and Experimental Therapeutics | 2016

Interaction of the Sodium/Glucose Cotransporter (SGLT) 2 inhibitor Canagliflozin with SGLT1 and SGLT2.

Ryuichi Ohgaki; Ling Wei; Kazunori Yamada; Taiki Hara; Chiaki Kuriyama; Suguru Okuda; Kiichiro Ueta; Masaharu Shiotani; Shushi Nagamori; Yoshikatsu Kanai

Canagliflozin, a selective sodium/glucose cotransporter (SGLT) 2 inhibitor, suppresses the renal reabsorption of glucose and decreases blood glucose level in patients with type 2 diabetes. A characteristic of canagliflozin is its modest SGLT1 inhibitory action in the intestine at clinical dosage. To reveal its mechanism of action, we investigated the interaction of canagliflozin with SGLT1 and SGLT2. Inhibition kinetics and transporter-mediated uptake were examined in human SGLT1- or SGLT2-expressing cells. Whole-cell patch-clamp recording was conducted to examine the sidedness of drug action. Canagliflozin competitively inhibited SGLT1 and SGLT2, with high potency and selectivity for SGLT2. Inhibition constant (Ki) values for SGLT1 and SGLT2 were 770.5 and 4.0 nM, respectively. 14C-canagliflozin was suggested to be transported by SGLT2; however, the transport rate was less than that of α-methyl-d-glucopyranoside. Canagliflozin inhibited α-methyl-d-glucopyranoside–induced SGLT1- and SGLT2-mediated inward currents preferentially from the extracellular side and not from the intracellular side. Based on the Ki value, canagliflozin is estimated to sufficiently inhibit SGLT2 from the urinary side in renal proximal tubules. The Ki value for SGLT1 suggests that canagliflozin suppresses SGLT1 in the small intestine from the luminal side, whereas it does not affect SGLT1 in the heart and skeletal muscle, considering the maximal concentration of plasma-unbound canagliflozin. Similarly, SGLT1 in the kidney would not be inhibited, thereby aiding in the prevention of hypoglycemia. After binding to SGLT2, canagliflozin may be reabsorbed by SGLT2, which leads to the low urinary excretion and prolonged drug action of canagliflozin.


Amino Acids | 2016

Structure–activity relations of leucine derivatives reveal critical moieties for cellular uptake and activation of mTORC1-mediated signaling

Shushi Nagamori; Pattama Wiriyasermkul; Suguru Okuda; Naoto Kojima; Yoshiyuki Hari; Shigeki Kiyonaka; Yasuo Mori; Hideyuki Tominaga; Ryuichi Ohgaki; Yoshikatsu Kanai

Among amino acids, leucine is a potential signaling molecule to regulate cell growth and metabolism by activating mechanistic target of rapamycin complex 1 (mTORC1). To reveal the critical structures of leucine molecule to activate mTORC1, we examined the structure–activity relationships of leucine derivatives in HeLa S3 cells for cellular uptake and for the induction of phosphorylation of p70 ribosomal S6 kinase 1 (p70S6K), a downstream effector of mTORC1. The activation of mTORC1 by leucine and its derivatives was the consequence of two successive events: the cellular uptake by l-type amino acid transporter 1 (LAT1) responsible for leucine uptake in HeLa S3 cells and the activation of mTORC1 following the transport. The structural requirement for the recognition by LAT1 was to have carbonyl oxygen, alkoxy oxygen of carboxyl group, amino group and hydrophobic side chain. In contrast, the requirement for mTORC1 activation was more rigorous. It additionally required fixed distance between carbonyl oxygen and alkoxy oxygen of carboxyl group, and amino group positioned at α-carbon. l-Configuration in chirality and appropriate length of side chain with a terminal isopropyl group were also important. This confirmed that LAT1 itself is not a leucine sensor. Some specialized leucine sensing mechanism with rigorous requirement for agonistic structures should exist inside the cells because leucine derivatives not transported by LAT1 did not activate mTORC1. Because LAT1–mTOR axis is involved in the regulation of cell growth and cancer progression, the results from this study may provide a new insight into therapeutics targeting both LAT1 and leucine sensor.


Cancer Science | 2016

Specific transport of 3-fluoro-l-α-methyl-tyrosine by LAT1 explains its specificity to malignant tumors in imaging.

Ling Wei; Hideyuki Tominaga; Ryuichi Ohgaki; Pattama Wiriyasermkul; Kohei Hagiwara; Suguru Okuda; Kyoichi Kaira; Noboru Oriuchi; Shushi Nagamori; Yoshikatsu Kanai

3‐18F‐l‐α‐methyl‐tyrosine ([18F]FAMT), a PET probe for tumor imaging, has advantages of high cancer‐specificity and lower physiologic background. FAMT‐PET has been proved useful in clinical studies for the prediction of prognosis, the assessment of therapy response and the differentiation of malignant tumors from inflammation and benign lesions. The tumor uptake of [18F]FAMT in PET is strongly correlated with the expression of L‐type amino acid transporter 1 (LAT1), an isoform of system L upregulated in cancers. In this study, to assess the transporter‐mediated mechanisms in FAMT uptake by tumors, we examined amino acid transporters for FAMT transport. We synthesized [14C]FAMT and measured its transport by human amino acid transporters expressed in Xenopus oocytes. The transport of FAMT was compared with that of l‐methionine, a well‐studied amino acid PET probe. The significance of LAT1 in FAMT uptake by tumor cells was confirmed by siRNA knockdown. Among amino acid transporters, [14C]FAMT was specifically transported by LAT1, whereas l‐[14C]methionine was taken up by most of the transporters. Km of LAT1‐mediated [14C]FAMT transport was 72.7 μM, similar to that for endogenous substrates. Knockdown of LAT1 resulted in the marked reduction of [14C]FAMT transport in HeLa S3 cells, confirming the contribution of LAT1 in FAMT uptake by tumor cells. FAMT is highly specific to cancer‐type amino acid transporter LAT1, which explains the cancer‐specific accumulation of [18F]FAMT in PET. This, vice versa, further supports the cancer‐specific expression of LAT1. This study has established FAMT as a LAT1‐specific molecular probe to monitor the expression of a potential tumor biomarker LAT1.


Journal of Pharmacological Sciences | 2016

Transport of 3-fluoro-l-α-methyl-tyrosine (FAMT) by organic ion transporters explains renal background in [18F]FAMT positron emission tomography

Ling Wei; Hideyuki Tominaga; Ryuichi Ohgaki; Pattama Wiriyasermkul; Kohei Hagiwara; Suguru Okuda; Kyoichi Kaira; Yukio Kato; Noboru Oriuchi; Shushi Nagamori; Yoshikatsu Kanai

A PET tracer for tumor imaging, 3-(18)F-l-α-methyl-tyrosine ([(18)F]FAMT), has advantages of high cancer-specificity and low physiological background. In clinical studies, FAMT-PET has been proved useful for the detection of malignant tumors and their differentiation from inflammation and benign lesions. The tumor specific uptake of FAMT is due to its high-selectivity to cancer-type amino acid transporter LAT1 among amino acid transporters. In [(18)F]FAMT PET, kidney is the only organ that shows high physiological background. To reveal transporters involved in renal accumulation of FAMT, we have examined [(14)C]FAMT uptake on the organic ion transporters responsible for the uptake into tubular epithelial cells. We have found that OAT1, OAT10 and OCTN2 transport [(14)C]FAMT. The [(14)C]FAMT uptake was inhibited by probenecid, furosemide and ethacrynic acid, consistent with the properties of the transporters. The amino acid uptake inhibitor, 2-amino-2-norbornanecarboxylic acid (BCH), also inhibited the [(14)C]FAMT uptake, whereas OCTN2-mediated [(14)C]FAMT uptake was Na(+)-dependent. We propose that FAMT uptake by OAT1, OAT10 and OCTN2 into tubular epithelial cells could contribute to the renal accumulation of FAMT. The results from this study would provide clues to the treatments to reduce renal background and enhance tumor uptake as well as to designing PET tracers with less renal accumulation.


Scientific Reports | 2017

Ratiometric fluorescence imaging of cell surface pH by poly(ethylene glycol)-phospholipid conjugated with fluorescein isothiocyanate

Ryuichi Ohgaki; Yuji Teramura; Daichi Hayashi; Lili Quan; Suguru Okuda; Shushi Nagamori; Madoka Takai; Yoshikatsu Kanai

Various physiological and pathological processes are accompanied with the alteration of pH at extracellular juxtamembrane region. Accordingly, the methods to analyze the cell surface pH have been demanded in biological and medical sciences. In this study, we have established a novel methodology for cell surface pH imaging using poly(ethylene glycol)-phospholipid (PEG-lipid) as a core structure of ratiometric fluorescent probes. PEG-lipid is a synthetic amphiphilic polymer originally developed for the cell surface modification in transplantation therapy. Via its hydrophobic alkyl chains of the phospholipid moiety, PEG-lipid is, when applied extracellularly, spontaneously inserted into the plasma membrane and retained at the surface of the cells. We have demonstrated that the PEG-lipid conjugated with fluorescein isothiocyanate (FITC-PEG-lipid) can be used as a sensitive and reversible cell-surface-anchored pH probe between weakly alkaline and acidic pH with an excellent spatiotemporal resolution. The remarkably simple procedure for cell-surface labeling with FITC-PEG-lipid would also be advantageous when considering its application to high-throughput in vitro assay. This study further indicates that various probes useful for the investigation of juxtamembrane environments could also be developed by using PEG-lipid as the core structure for bio-membrane anchoring.


Journal of Pharmacological Sciences | 2017

Structure-activity relationship of a novel series of inhibitors for cancer type transporter L-type amino acid transporter 1 (LAT1)

Pornparn Kongpracha; Shushi Nagamori; Pattama Wiriyasermkul; Yoko Tanaka; Kazuko Kaneda; Suguru Okuda; Ryuichi Ohgaki; Yoshikatsu Kanai

Collaboration


Dive into the Suguru Okuda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideyuki Tominaga

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noboru Oriuchi

Fukushima Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge