Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suguru Tarui is active.

Publication


Featured researches published by Suguru Tarui.


Circulation Research | 2015

Intracoronary Autologous Cardiac Progenitor Cell Transfer in Patients With Hypoplastic Left Heart Syndrome The TICAP Prospective Phase 1 Controlled Trial

Shuta Ishigami; Shinichi Ohtsuki; Suguru Tarui; Daiki Ousaka; Takahiro Eitoku; Maiko Kondo; Michihiro Okuyama; Junko Kobayashi; Kenji Baba; Sadahiko Arai; Takuya Kawabata; Ko Yoshizumi; Atsushi Tateishi; Yosuke Kuroko; Tatsuo Iwasaki; Shuhei Sato; Shingo Kasahara; Shunji Sano; Hidemasa Oh

Rationale: Hypoplastic left heart syndrome (HLHS) remains a lethal congenital cardiac defect. Recent studies have suggested that intracoronary administration of autologous cardiosphere-derived cells (CDCs) may improve ventricular function. Objective: The aim of this study was to test whether intracoronary delivery of CDCs is feasible and safe in patients with hypoplastic left heart syndrome. Methods and Results: Between January 5, 2011, and January 16, 2012, 14 patients (1.8±1.5 years) were prospectively assigned to receive intracoronary infusion of autologous CDCs 33.4±8.1 days after staged procedures (n=7), followed by 7 controls with standard palliation alone. The primary end point was to assess the safety, and the secondary end point included the preliminary efficacy to verify the right ventricular ejection fraction improvements between baseline and 3 months. Manufacturing and intracoronary delivery of CDCs were feasible, and no serious adverse events were reported within the 18-month follow-up. Patients treated with CDCs showed right ventricular ejection fraction improvement from baseline to 3-month follow-up (46.9%±4.6% to 52.1%±2.4%; P=0.008). Compared with controls at 18 months, cardiac MRI analysis of CDC-treated patients showed a higher right ventricular ejection fraction (31.5%±6.8% versus 40.4%±7.6%; P=0.049), improved somatic growth (P=0.0005), reduced heart failure status (P=0.003), and lower incidence of coil occlusion for collaterals (P=0.007). Conclusions: Intracoronary infusion of autologous CDCs seems to be feasible and safe in children with hypoplastic left heart syndrome after staged surgery. Large phase 2 trials are warranted to examine the potential effects of cardiac function improvements and the long-term benefits of clinical outcomes. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01273857.


PLOS ONE | 2014

Directed Differentiation of Patient-Specific Induced Pluripotent Stem Cells Identifies the Transcriptional Repression and Epigenetic Modification of NKX2-5, HAND1, and NOTCH1 in Hypoplastic Left Heart Syndrome

Junko Kobayashi; Masashi Yoshida; Suguru Tarui; Masataka Hirata; Yusuke Nagai; Shingo Kasahara; Keiji Naruse; Hiroshi Ito; Shunji Sano; Hidemasa Oh

The genetic basis of hypoplastic left heart syndrome (HLHS) remains unknown, and the lack of animal models to reconstitute the cardiac maldevelopment has hampered the study of this disease. This study investigated the altered control of transcriptional and epigenetic programs that may affect the development of HLHS by using disease-specific induced pluripotent stem (iPS) cells. Cardiac progenitor cells (CPCs) were isolated from patients with congenital heart diseases to generate patient-specific iPS cells. Comparative gene expression analysis of HLHS- and biventricle (BV) heart-derived iPS cells was performed to dissect the complex genetic circuits that may promote the disease phenotype. Both HLHS- and BV heart-derived CPCs were reprogrammed to generate disease-specific iPS cells, which showed characteristic human embryonic stem cell signatures, expressed pluripotency markers, and could give rise to cardiomyocytes. However, HLHS-iPS cells exhibited lower cardiomyogenic differentiation potential than BV-iPS cells. Quantitative gene expression analysis demonstrated that HLHS-derived iPS cells showed transcriptional repression of NKX2-5, reduced levels of TBX2 and NOTCH/HEY signaling, and inhibited HAND1/2 transcripts compared with control cells. Although both HLHS-derived CPCs and iPS cells showed reduced SRE and TNNT2 transcriptional activation compared with BV-derived cells, co-transfection of NKX2-5, HAND1, and NOTCH1 into HLHS-derived cells resulted in synergistic restoration of these promoters activation. Notably, gain- and loss-of-function studies revealed that NKX2-5 had a predominant impact on NPPA transcriptional activation. Moreover, differentiated HLHS-derived iPS cells showed reduced H3K4 dimethylation as well as histone H3 acetylation but increased H3K27 trimethylation to inhibit transcriptional activation on the NKX2-5 promoter. These findings suggest that patient-specific iPS cells may provide molecular insights into complex transcriptional and epigenetic mechanisms, at least in part, through combinatorial expression of NKX2-5, HAND1, and NOTCH1 that coordinately contribute to cardiac malformations in HLHS.


BioMed Research International | 2015

Novel Model of Pulmonary Artery Banding Leading to Right Heart Failure in Rats

Masataka Hirata; Daiki Ousaka; Sadahiko Arai; Michihiro Okuyama; Suguru Tarui; Junko Kobayashi; Shingo Kasahara; Shunji Sano

Background. Congenital heart diseases often involve chronic pressure overload of the right ventricle (RV) which is a major cause of RV dysfunction. Pulmonary artery (PA) banding has been used to produce animal models of RV dysfunction. We have devised a new and easier method of constricting the PA and compared it directly with the partial ligation method. Methods. Eight-week-old male Sprague-Dawley rats (240–260 g) were divided into three groups: sham operation, partial pulmonary artery ligation (PAL) procedure, and pulmonary artery half-closed clip (PAC) procedure. RV function and remodeling were determined by echocardiography and histomorphometry. Results. Surgical mortality was significantly lower in the PAC group while echocardiography revealed significantly more signs of RV dysfunction. At the 8th week after surgery RV fibrosis rate was significantly higher in the PAC group. Conclusions. This procedure of pulmonary artery banding in rats is easier and more efficient than partial ligation.


Circulation Research | 2015

Intracoronary Autologous Cardiac Progenitor Cell Transfer in Patients With Hypoplastic Left Heart Syndrome

Shuta Ishigami; Shinichi Ohtsuki; Suguru Tarui; Daiki Ousaka; Takahiro Eitoku; Maiko Kondo; Michihiro Okuyama; Junko Kobayashi; Kenji Baba; Sadahiko Arai; Takuya Kawabata; Ko Yoshizumi; Atsushi Tateishi; Yosuke Kuroko; Tatsuo Iwasaki; Shuhei Sato; Shingo Kasahara; Shunji Sano; Hidemasa Oh

Rationale: Hypoplastic left heart syndrome (HLHS) remains a lethal congenital cardiac defect. Recent studies have suggested that intracoronary administration of autologous cardiosphere-derived cells (CDCs) may improve ventricular function. Objective: The aim of this study was to test whether intracoronary delivery of CDCs is feasible and safe in patients with hypoplastic left heart syndrome. Methods and Results: Between January 5, 2011, and January 16, 2012, 14 patients (1.8±1.5 years) were prospectively assigned to receive intracoronary infusion of autologous CDCs 33.4±8.1 days after staged procedures (n=7), followed by 7 controls with standard palliation alone. The primary end point was to assess the safety, and the secondary end point included the preliminary efficacy to verify the right ventricular ejection fraction improvements between baseline and 3 months. Manufacturing and intracoronary delivery of CDCs were feasible, and no serious adverse events were reported within the 18-month follow-up. Patients treated with CDCs showed right ventricular ejection fraction improvement from baseline to 3-month follow-up (46.9%±4.6% to 52.1%±2.4%; P=0.008). Compared with controls at 18 months, cardiac MRI analysis of CDC-treated patients showed a higher right ventricular ejection fraction (31.5%±6.8% versus 40.4%±7.6%; P=0.049), improved somatic growth (P=0.0005), reduced heart failure status (P=0.003), and lower incidence of coil occlusion for collaterals (P=0.007). Conclusions: Intracoronary infusion of autologous CDCs seems to be feasible and safe in children with hypoplastic left heart syndrome after staged surgery. Large phase 2 trials are warranted to examine the potential effects of cardiac function improvements and the long-term benefits of clinical outcomes. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01273857.


Circulation Research | 2015

Intracoronary Autologous Cardiac Progenitor Cell Transfer in Patients With Hypoplastic Left Heart SyndromeNovelty and Significance

Shuta Ishigami; Shinichi Ohtsuki; Suguru Tarui; Daiki Ousaka; Takahiro Eitoku; Maiko Kondo; Michihiro Okuyama; Junko Kobayashi; Kenji Baba; Sadahiko Arai; Takuya Kawabata; Ko Yoshizumi; Atsushi Tateishi; Yosuke Kuroko; Tatsuo Iwasaki; Shuhei Sato; Shingo Kasahara; Shunji Sano; Hidemasa Oh

Rationale: Hypoplastic left heart syndrome (HLHS) remains a lethal congenital cardiac defect. Recent studies have suggested that intracoronary administration of autologous cardiosphere-derived cells (CDCs) may improve ventricular function. Objective: The aim of this study was to test whether intracoronary delivery of CDCs is feasible and safe in patients with hypoplastic left heart syndrome. Methods and Results: Between January 5, 2011, and January 16, 2012, 14 patients (1.8±1.5 years) were prospectively assigned to receive intracoronary infusion of autologous CDCs 33.4±8.1 days after staged procedures (n=7), followed by 7 controls with standard palliation alone. The primary end point was to assess the safety, and the secondary end point included the preliminary efficacy to verify the right ventricular ejection fraction improvements between baseline and 3 months. Manufacturing and intracoronary delivery of CDCs were feasible, and no serious adverse events were reported within the 18-month follow-up. Patients treated with CDCs showed right ventricular ejection fraction improvement from baseline to 3-month follow-up (46.9%±4.6% to 52.1%±2.4%; P=0.008). Compared with controls at 18 months, cardiac MRI analysis of CDC-treated patients showed a higher right ventricular ejection fraction (31.5%±6.8% versus 40.4%±7.6%; P=0.049), improved somatic growth (P=0.0005), reduced heart failure status (P=0.003), and lower incidence of coil occlusion for collaterals (P=0.007). Conclusions: Intracoronary infusion of autologous CDCs seems to be feasible and safe in children with hypoplastic left heart syndrome after staged surgery. Large phase 2 trials are warranted to examine the potential effects of cardiac function improvements and the long-term benefits of clinical outcomes. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01273857.


Circulation Research | 2015

Intracoronary Autologous Cardiac Progenitor Cell Transfer in Patients With Hypoplastic Left Heart SyndromeNovelty and Significance: The TICAP Prospective Phase 1 Controlled Trial

Shuta Ishigami; Shinichi Ohtsuki; Suguru Tarui; Daiki Ousaka; Takahiro Eitoku; Maiko Kondo; Michihiro Okuyama; Junko Kobayashi; Kenji Baba; Sadahiko Arai; Takuya Kawabata; Ko Yoshizumi; Atsushi Tateishi; Yosuke Kuroko; Tatsuo Iwasaki; Shuhei Sato; Shingo Kasahara; Shunji Sano; Hidemasa Oh

Rationale: Hypoplastic left heart syndrome (HLHS) remains a lethal congenital cardiac defect. Recent studies have suggested that intracoronary administration of autologous cardiosphere-derived cells (CDCs) may improve ventricular function. Objective: The aim of this study was to test whether intracoronary delivery of CDCs is feasible and safe in patients with hypoplastic left heart syndrome. Methods and Results: Between January 5, 2011, and January 16, 2012, 14 patients (1.8±1.5 years) were prospectively assigned to receive intracoronary infusion of autologous CDCs 33.4±8.1 days after staged procedures (n=7), followed by 7 controls with standard palliation alone. The primary end point was to assess the safety, and the secondary end point included the preliminary efficacy to verify the right ventricular ejection fraction improvements between baseline and 3 months. Manufacturing and intracoronary delivery of CDCs were feasible, and no serious adverse events were reported within the 18-month follow-up. Patients treated with CDCs showed right ventricular ejection fraction improvement from baseline to 3-month follow-up (46.9%±4.6% to 52.1%±2.4%; P=0.008). Compared with controls at 18 months, cardiac MRI analysis of CDC-treated patients showed a higher right ventricular ejection fraction (31.5%±6.8% versus 40.4%±7.6%; P=0.049), improved somatic growth (P=0.0005), reduced heart failure status (P=0.003), and lower incidence of coil occlusion for collaterals (P=0.007). Conclusions: Intracoronary infusion of autologous CDCs seems to be feasible and safe in children with hypoplastic left heart syndrome after staged surgery. Large phase 2 trials are warranted to examine the potential effects of cardiac function improvements and the long-term benefits of clinical outcomes. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01273857.


The Journal of Thoracic and Cardiovascular Surgery | 2015

Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial.

Suguru Tarui; Shuta Ishigami; Daiki Ousaka; Shingo Kasahara; Shinichi Ohtsuki; Shunji Sano; Hidemasa Oh


Methodist DeBakey cardiovascular journal | 2014

Stem cell therapies in patients with single ventricle physiology.

Suguru Tarui; Shunji Sano; Hidemasa Oh


Circulation | 2009

Successful Combined Treatment of Primary Cardiac Malignant Lymphoma With Urgent Cardiac Operation and Chemotherapy

Yasufumi Fujita; Masahiko Ikebuchi; Suguru Tarui; Hiroyuki Irie


publisher | None

title

author

Collaboration


Dive into the Suguru Tarui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge