Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suh Lee is active.

Publication


Featured researches published by Suh Lee.


NeuroImage | 2008

Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects

Xue Hua; Alex D. Leow; Neelroop N. Parikshak; Suh Lee; Ming Chang Chiang; Arthur W. Toga; Clifford R. Jack; Michael W. Weiner; Paul M. Thompson

In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimers disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimers Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6+/-7.6 years), 330 MCI subjects (74.8+/-7.5), and 181 controls (75.9+/-5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements--the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores - at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers--1/6 of the normal group--showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies.


NeuroImage | 2010

Voxelwise genome-wide association study (vGWAS).

Jason L. Stein; Xue Hua; Suh Lee; April J. Ho; Alex D. Leow; Arthur W. Toga; Andrew J. Saykin; Li Shen; Tatiana Foroud; Nathan Pankratz; Matthew J. Huentelman; David Craig; Jill D. Gerber; April N. Allen; Jason J. Corneveaux; Bryan M. DeChairo; Steven G. Potkin; Michael W. Weiner; Paul M. Thompson

The structure of the human brain is highly heritable, and is thought to be influenced by many common genetic variants, many of which are currently unknown. Recent advances in neuroimaging and genetics have allowed collection of both highly detailed structural brain scans and genome-wide genotype information. This wealth of information presents a new opportunity to find the genes influencing brain structure. Here we explore the relation between 448,293 single nucleotide polymorphisms in each of 31,622 voxels of the entire brain across 740 elderly subjects (mean age+/-s.d.: 75.52+/-6.82 years; 438 male) including subjects with Alzheimers disease, Mild Cognitive Impairment, and healthy elderly controls from the Alzheimers Disease Neuroimaging Initiative (ADNI). We used tensor-based morphometry to measure individual differences in brain structure at the voxel level relative to a study-specific template based on healthy elderly subjects. We then conducted a genome-wide association at each voxel to identify genetic variants of interest. By studying only the most associated variant at each voxel, we developed a novel method to address the multiple comparisons problem and computational burden associated with the unprecedented amount of data. No variant survived the strict significance criterion, but several genes worthy of further exploration were identified, including CSMD2 and CADPS2. These genes have high relevance to brain structure. This is the first voxelwise genome wide association study to our knowledge, and offers a novel method to discover genetic influences on brain structure.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly

April J. Ho; Jason L. Stein; Xue Hua; Suh Lee; Derrek P. Hibar; Alex D. Leow; Ivo D. Dinov; Arthur W. Toga; Andrew J. Saykin; Li Shen; Tatiana Foroud; Nathan Pankratz; Matthew J. Huentelman; David Craig; Jill D. Gerber; April N. Allen; Jason J. Corneveaux; Dietrich A. Stephan; Charles DeCarli; Bryan M. DeChairo; Steven G. Potkin; Clifford R. Jack; Michael W. Weiner; Cyrus A. Raji; Oscar L. Lopez; James T. Becker; Owen T. Carmichael; Paul M. Thompson

A recently identified variant within the fat mass and obesity-associated (FTO) gene is carried by 46% of Western Europeans and is associated with an ~1.2 kg higher weight, on average, in adults and an ~1 cm greater waist circumference. With >1 billion overweight and 300 million obese persons worldwide, it is crucial to understand the implications of carrying this very common allele for the health of our aging population. FTO is highly expressed in the brain and elevated body mass index (BMI) is associated with brain atrophy, but it is unknown how the obesity-associated risk allele affects human brain structure. We therefore generated 3D maps of regional brain volume differences in 206 healthy elderly subjects scanned with MRI and genotyped as part of the Alzheimers Disease Neuroimaging Initiative. We found a pattern of systematic brain volume deficits in carriers of the obesity-associated risk allele versus noncarriers. Relative to structure volumes in the mean template, FTO risk allele carriers versus noncarriers had an average brain volume difference of ~8% in the frontal lobes and 12% in the occipital lobes—these regions also showed significant volume deficits in subjects with higher BMI. These brain differences were not attributable to differences in cholesterol levels, hypertension, or the volume of white matter hyperintensities; which were not detectably higher in FTO risk allele carriers versus noncarriers. These brain maps reveal that a commonly carried susceptibility allele for obesity is associated with structural brain atrophy, with implications for the health of the elderly.


NeuroImage | 2008

3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry

Xue Hua; Alex D. Leow; Suh Lee; Andrea D. Klunder; Arthur W. Toga; Natasha Lepore; Yi Yu Chou; Caroline Brun; Ming Chang Chiang; Marina Barysheva; Clifford R. Jack; Matt A. Bernstein; Paula J. Britson; Chadwick P. Ward; Jennifer L. Whitwell; Bret Borowski; Adam S. Fleisher; Nick C. Fox; Richard G. Boyes; Josephine Barnes; Danielle Harvey; John Kornak; Norbert Schuff; Lauren Boreta; Gene E. Alexander; Michael W. Weiner; Paul M. Thompson

Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimers disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.1 years+/-7.7 SD). We warped each individual brain image (N=120) to the control group average template to create Jacobian maps, which show the local expansion or compression factor at each point in the image, reflecting individual volumetric differences. Statistical maps of group differences revealed widespread medial temporal and limbic atrophy in AD, with a lesser, more restricted distribution in MCI. Atrophy and CSF space expansion both correlated strongly with Mini-Mental State Exam (MMSE) scores and Clinical Dementia Rating (CDR). Using cumulative p-value plots, we investigated how detection sensitivity was influenced by the sample size, the choice of search region (whole brain, temporal lobe, hippocampus), the initial linear registration method (9- versus 12-parameter), and the type of TBM design. In the future, TBM may help to (1) identify factors that resist or accelerate the disease process, and (2) measure disease burden in treatment trials.


NeuroImage | 2009

Alzheimer’s Disease Neuroimaging Initiative: A one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition

Alex D. Leow; Igor Yanovsky; Neelroop N. Parikshak; Xue Hua; Suh Lee; Arthur W. Toga; Clifford R. Jack; Matt A. Bernstein; Paula J. Britson; Jeffrey L. Gunter; Chadwick P. Ward; Bret Borowski; Leslie M. Shaw; John Q. Trojanowski; Adam S. Fleisher; Danielle Harvey; John Kornak; Norbert Schuff; Gene E. Alexander; Michael W. Weiner; Paul M. Thompson

Tensor-based morphometry can recover three-dimensional longitudinal brain changes over time by nonlinearly registering baseline to follow-up MRI scans of the same subject. Here, we compared the anatomical distribution of longitudinal brain structural changes, over 12 months, using a subset of the ADNI dataset consisting of 20 patients with Alzheimers disease (AD), 40 healthy elderly controls, and 40 individuals with mild cognitive impairment (MCI). Each individual longitudinal change map (Jacobian map) was created using an unbiased registration technique, and spatially normalized to a geometrically-centered average image based on healthy controls. Voxelwise statistical analyses revealed regional differences in atrophy rates, and these differences were correlated with clinical measures and biomarkers. Consistent with prior studies, we detected widespread cerebral atrophy in AD, and a more restricted atrophic pattern in MCI. In MCI, temporal lobe atrophy rates were correlated with changes in mini-mental state exam (MMSE) scores, clinical dementia rating (CDR), and logical/verbal learning memory scores. In AD, temporal atrophy rates were correlated with several biomarker indices, including a higher CSF level of p-tau protein, and a greater CSF tau/beta amyloid 1-42 (ABeta42) ratio. Temporal lobe atrophy was significantly faster in MCI subjects who converted to AD than in non-converters. Serial MRI scans can therefore be analyzed with nonlinear image registration to relate ongoing neurodegeneration to a variety of pathological biomarkers, cognitive changes, and conversion from MCI to AD, tracking disease progression in 3-dimensional detail.


Neurobiology of Aging | 2010

Boosting power for clinical trials using classifiers based on multiple biomarkers

Omid Kohannim; Xue Hua; Derrek P. Hibar; Suh Lee; Yi-Yu Chou; Arthur W. Toga; Clifford R. Jack; Michael W. Weiner; Paul M. Thompson

Machine learning methods pool diverse information to perform computer-assisted diagnosis and predict future clinical decline. We introduce a machine learning method to boost power in clinical trials. We created a Support Vector Machine algorithm that combines brain imaging and other biomarkers to classify 737 Alzheimers disease Neuroimaging initiative (ADNI) subjects as having Alzheimers disease (AD), mild cognitive impairment (MCI), or normal controls. We trained our classifiers based on example data including: MRI measures of hippocampal, ventricular, and temporal lobe volumes, a PET-FDG numerical summary, CSF biomarkers (t-tau, p-tau, and Abeta(42)), ApoE genotype, age, sex, and body mass index. MRI measures contributed most to Alzheimers disease (AD) classification; PET-FDG and CSF biomarkers, particularly Abeta(42), contributed more to MCI classification. Using all biomarkers jointly, we used our classifier to select the one-third of the subjects most likely to decline. In this subsample, fewer than 40 AD and MCI subjects would be needed to detect a 25% slowing in temporal lobe atrophy rates with 80% power--a substantial boosting of power relative to standard imaging measures.


NeuroImage | 2009

Optimizing power to track brain degeneration in Alzheimer’s disease and mild cognitive impairment with tensor-based morphometry: An ADNI study of 515 subjects

Xue Hua; Suh Lee; Igor Yanovsky; Alex D. Leow; Yi Yu Chou; April J. Ho; Boris A. Gutman; Arthur W. Toga; Clifford R. Jack; Matt A. Bernstein; Eric M. Reiman; Danielle Harvey; John Kornak; Norbert Schuff; Gene E. Alexander; Michael W. Weiner; Paul M. Thompson

Tensor-based morphometry (TBM) is a powerful method to map the 3D profile of brain degeneration in Alzheimers disease (AD) and mild cognitive impairment (MCI). We optimized a TBM-based image analysis method to determine what methodological factors, and which image-derived measures, maximize statistical power to track brain change. 3D maps, tracking rates of structural atrophy over time, were created from 1030 longitudinal brain MRI scans (1-year follow-up) of 104 AD patients (age: 75.7+/-7.2 years; MMSE: 23.3+/-1.8, at baseline), 254 amnestic MCI subjects (75.0+/-7.2 years; 27.0+/-1.8), and 157 healthy elderly subjects (75.9+/-5.1 years; 29.1+/-1.0), as part of the Alzheimers Disease Neuroimaging Initiative (ADNI). To determine which TBM designs gave greatest statistical power, we compared different linear and nonlinear registration parameters (including different regularization functions), and different numerical summary measures derived from the maps. Detection power was greatly enhanced by summarizing changes in a statistically-defined region-of-interest (ROI) derived from an independent training sample of 22 AD patients. Effect sizes were compared using cumulative distribution function (CDF) plots and false discovery rate methods. In power analyses, the best method required only 48 AD and 88 MCI subjects to give 80% power to detect a 25% reduction in the mean annual change using a two-sided test (at alpha=0.05). This is a drastic sample size reduction relative to using clinical scores as outcome measures (619 AD/6797 MCI for the ADAS-Cog, and 408 AD/796 MCI for the Clinical Dementia Rating sum-of-boxes scores). TBM offers high statistical power to track brain changes in large, multi-site neuroimaging studies and clinical trials of AD.


Neurobiology of Aging | 2010

Obesity is linked with lower brain volume in 700 AD and MCI patients

April J. Ho; Cyrus A. Raji; James T. Becker; Oscar L. Lopez; Lewis H. Kuller; Xue Hua; Suh Lee; Derrek P. Hibar; Ivo D. Dinov; Jason L. Stein; Clifford R. Jack; Michael W. Weiner; Arthur W. Toga; Paul M. Thompson

Obesity is associated with lower brain volumes in cognitively normal elderly subjects, but no study has yet investigated the effects of obesity on brain structure in patients with mild cognitive impairment (MCI) or Alzheimers disease (AD). To determine if higher body mass index (BMI) is associated with brain volume deficits in cognitively impaired elderly subjects, we analyzed brain magnetic resonance imaging (MRI) scans of 700 MCI or AD patients from 2 different cohorts: the Alzheimers Disease Neuroimaging Initiative (ADNI) and the Cardiovascular Health Study-Cognition Study (CHS-CS). Tensor-based morphometry (TBM) was used to create 3-dimensional maps of regional tissue excess or deficits in subjects with MCI (ADNI, n = 399; CHS-CS, n = 77) and AD (ADNI, n = 188; CHS, n = 36). In both AD and MCI groups, higher body mass index was associated with brain volume deficits in frontal, temporal, parietal, and occipital lobes; the atrophic pattern was consistent in both ADNI and CHS populations. Cardiovascular risk factors, especially obesity, should be considered as influencing brain structure in those already afflicted by cognitive impairment and dementia.


NeuroImage | 2010

Genome-Wide Analysis Reveals Novel Genes Influencing Temporal Lobe Structure with Relevance to Neurodegeneration in Alzheimer’s Disease

Jason L. Stein; Xue Hua; Jonathan H. Morra; Suh Lee; Derrek P. Hibar; April J. Ho; Alex D. Leow; Arthur W. Toga; Jae Hoon Sul; Hyun Min Kang; Eleazar Eskin; Andrew J. Saykin; Li Shen; Tatiana Foroud; Nathan Pankratz; Matthew J. Huentelman; David Craig; Jill D. Gerber; April N. Allen; Jason J. Corneveaux; Dietrich A. Stephan; Jennifer A. Webster; Bryan M. DeChairo; Steven G. Potkin; Clifford R. Jack; Michael W. Weiner; Paul M. Thompson

In a genome-wide association study of structural brain degeneration, we mapped the 3D profile of temporal lobe volume differences in 742 brain MRI scans of Alzheimers disease patients, mildly impaired, and healthy elderly subjects. After searching 546,314 genomic markers, 2 single nucleotide polymorphisms (SNPs) were associated with bilateral temporal lobe volume (P<5 x 10(-7)). One SNP, rs10845840, is located in the GRIN2B gene which encodes the N-methyl-d-aspartate (NMDA) glutamate receptor NR2B subunit. This protein - involved in learning and memory, and excitotoxic cell death - has age-dependent prevalence in the synapse and is already a therapeutic target in Alzheimers disease. Risk alleles for lower temporal lobe volume at this SNP were significantly over-represented in AD and MCI subjects vs. controls (odds ratio=1.273; P=0.039) and were associated with mini-mental state exam scores (MMSE; t=-2.114; P=0.035) demonstrating a negative effect on global cognitive function. Voxelwise maps of genetic association of this SNP with regional brain volumes, revealed intense temporal lobe effects (FDR correction at q=0.05; critical P=0.0257). This study uses large-scale brain mapping for gene discovery with implications for Alzheimers disease.


Neurobiology of Aging | 2010

Sex and age differences in atrophic rates: an ADNI study with n=1368 MRI scans

Xue Hua; Derrek P. Hibar; Suh Lee; Arthur W. Toga; Clifford R. Jack; Michael W. Weiner; Paul M. Thompson

We set out to determine factors that influence the rate of brain atrophy in 1-year longitudinal magnetic resonance imaging (MRI) data. With tensor-based morphometry (TBM), we mapped the 3-dimensional profile of progressive atrophy in 144 subjects with probable Alzheimers disease (AD) (age: 76.5 +/- 7.4 years), 338 with amnestic mild cognitive impairment (MCI; 76.0 +/- 7.2), and 202 healthy controls (77.0 +/- 5.1), scanned twice, 1 year apart. Statistical maps revealed significant age and sex differences in atrophic rates. Brain atrophic rates were about 1%-1.5% faster in women than men. Atrophy was faster in younger than older subjects, most prominently in mild cognitive impairment, with a 1% increase in the rates of atrophy and 2% in ventricular expansion, for every 10-year decrease in age. TBM-derived atrophic rates correlated with reduced beta-amyloid and elevated tau levels (n = 363) at baseline, baseline and progressive deterioration in clinical measures, and increasing numbers of risk alleles for the ApoE4 gene. TBM is a sensitive, high-throughput biomarker for tracking disease progression in large imaging studies; sub-analyses focusing on women or younger subjects gave improved sample size requirements for clinical trials.

Collaboration


Dive into the Suh Lee's collaboration.

Top Co-Authors

Avatar

Paul M. Thompson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Arthur W. Toga

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Xue Hua

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex D. Leow

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

April J. Ho

University of California

View shared research outputs
Top Co-Authors

Avatar

Igor Yanovsky

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Derrek P. Hibar

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge