Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suhel Parvez is active.

Publication


Featured researches published by Suhel Parvez.


Current Biology | 2006

CRACM1 Multimers Form the Ion-Selective Pore of the CRAC Channel

Monika Vig; Andreas Beck; James M. Billingsley; Annette Lis; Suhel Parvez; Christine Peinelt; Dana Lynn T Koomoa; Jonathan Soboloff; Donald L. Gill; Andrea Fleig; Jean-Pierre Kinet; Reinhold Penner

Receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER) is often followed by Ca(2+) entry through Ca(2+)-release-activated Ca(2+) (CRAC) channels in the plasma membrane . RNAi screens have identified STIM1 as the putative ER Ca(2+) sensor and CRACM1 (Orai1; ) as the putative store-operated Ca(2+) channel. Overexpression of both proteins is required to reconstitute CRAC currents (I(CRAC); ). We show here that CRACM1 forms multimeric assemblies that bind STIM1 and that acidic residues in the transmembrane (TM) and extracellular domains of CRACM1 contribute to the ionic selectivity of the CRAC-channel pore. Replacement of the conserved glutamate in position 106 of the first TM domain of CRACM1 with glutamine (E106Q) acts as a dominant-negative protein, and substitution with aspartate (E106D) enhances Na(+), Ba(2+), and Sr(2+) permeation relative to Ca(2+). Mutating E190Q in TM3 also affects channel selectivity, suggesting that glutamate residues in both TM1 and TM3 face the lumen of the pore. Furthermore, mutating a putative Ca(2+) binding site in the first extracellular loop of CRACM1 (D110/112A) enhances monovalent cation permeation, suggesting that these residues too contribute to the coordination of Ca(2+) ions to the pore. Our data provide unequivocal evidence that CRACM1 multimers form the Ca(2+)-selective CRAC-channel pore.


Ecotoxicology and Environmental Safety | 2003

Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch

Iqbal Sayeed; Suhel Parvez; Suwarna Pandey; Bilal Bin-Hafeez; Rizwanul Haque; Sheikh Raisuddin

The pyrethroid class of insecticides, including deltamethrin, are being used as substitutes for organochlorines and organophosphates in pest-control programs because of their low environmental persistence and toxicity. Ecotoxicological consequences of deltamethrin, particularly its effects on antioxidants in fish and other aquatic organisms, are not well understood. We investigated the effect of deltamethrin (0.75 microg/L) on antioxidants in a freshwater fish, Channa punctatus Bloch, using standard laboratory conditions. A single exposure for 48 h caused induction of various antioxidant enzymes and nonenzymatic antioxidants in kidney and liver. The induction of these antioxidants was not very prominent in gills. In fact, certain antioxidants were found to be depleted in gills. Catalase activity was decreased in all the tissues. Deltamethrin also induced lipid peroxidation in all the tissues, gills showing the highest levels. Glutathione, which is an established nonenzymatic antioxidant in fish, was significantly (P<0.001) increased in all the tissues. Ascorbic acid content increased in kidney and liver while it decreased in gills. The findings of the present investigation show that deltamethrin has oxidative-stress-inducing potential in fish, and gills are the most sensitive organs. It is also interesting to note that gills are the primary sites of deltamethrin absorption and their antioxidant potential is also very poor. The various parameters studied in this investigation can also be used as biomarkers of exposure to deltamethrin. It is suggested that appropriate ecotoxicological risk assessment should be made in the areas where deltamethrin is proposed to be used in pest control activities.


Science of The Total Environment | 2003

Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.)

Suwarna Pandey; Suhel Parvez; Iqbal Sayeed; Rizwanul Haque; Bilal Bin-Hafeez; Sheikh Raisuddin

Various oxidative stress biomarkers in gill, kidney and liver tissues in the Indian freshwater fish Wallago attu (Bl. & Schn.) were investigated. Fish were collected from two sites along the river Yamuna, which differ in their extent and type of pollution load. A comparison was made between the biomarker responses and general water chemistry at the two sites. The oxidative stress biomarkers that were analyzed included superoxide dismutase (SOD), catalase (CAT), xanthine oxidase (XOD) and glutathione redox cycle enzymes viz., glutathione peroxidase (GPx), glutathione reductase (GR) and glucose 6-phosphate dehydrogenase (G6PD). Levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were also evaluated. All biomarkers; SOD (P<0.001 in liver, kidney and gill), XOD (P<0.01 in kidney and P<0.001 in liver and gill), GR (P<0.01 in liver, P>0.05 in kidney and P<0.001 in gill), G6PD (P<0.001 in liver, P>0.05 in kidney and P<0.01 in gill), GSH (P<0.001 in liver, kidney and gill) and LPO (P>0.05 in liver, kidney and gill) were found to be substantially higher in the fish collected from Panipat when compared with values in tissues of fish collected from Agra site. GPx and CAT showed a varied response. GPx activity was higher (P<0.001) in gills and kidney of the fish collected at Panipat site. However, liver showed significant low values (P<0.01) when compared with Agra site values. CAT activity was found to be significantly low, in both liver (P<0.01) and kidney (P<0.001) whereas in gills non-significant (P>0.05) low values were observed. Water chemistry data at two sites indicated that Panipat site with higher biochemical oxygen demand, chemical oxygen demand, pH and low dissolved oxygen was comparatively more polluted than Agra site. Industrial activity profile of both the sites also indicates that Panipat has vigorous industrial activity coupled with intensive use of chemicals in agricultural practices in Haryana state. The findings of the present investigation provide a rational use of oxidative stress biomarkers in aquatic ecosystem pollution biomonitoring. This is also the first such attempt reported from India.


Chemico-Biological Interactions | 2008

Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch

Suwarna Pandey; Suhel Parvez; Rizwan A. Ansari; Mehboob Ali; Manpreet Kaur; Faisal Hayat; Firoz Ahmad; Sheikh Raisuddin

The trace metals are frequently encountered as mixtures of essential and non-essential elements. Therefore, evaluation of their toxic effects individually does not offer a realistic estimate of their impact on biological processes. We studied effects of a mixture of four essential and toxic metals (Cu, Cd, Fe and Ni) on biochemical and morphological characteristics of the gills of a biomarker freshwater fish Channa punctata (Bloch) using environmentally relevant concentrations. Fish were exposed to metal mixture through tank water for 7, 15 and 30 days. Biochemical studies as well as light microscopy (LM) and scanning electron microscopy (SEM) revealed significant metal exposure-induced alterations in gills. Besides ultastructural changes, activities of antioxidant enzymes such catalase (CAT), glutathione S-transferase (GST) and superoxide dismutase (SOD) were significantly altered in the gills of exposed fish. The reduced glutathione (GSH) was significantly (p<0.001) decreased, while lipid peroxidation (LPO) was significantly (p<0.001) increased. The main alterations in general morphology of fish gills included spiking and fusion of secondary lamellae, formation of club-shaped filaments, and vacuolization and necrosis of filament epithelium in the interlamellar regions. SEM studies showed gradual increase of the density and apical surface area of the chloride cells and transformation of the surface structure of the pavement cells. The results of this study indicate adaptive as well a toxic responses in fish gills exposed to mixture of trace metals. Low concentrations of trace metal appear to compromise the antioxidant defense of gills. Lesions in the gill morphology caused by the effect of low concentrations of trace metals could lead to functional alterations and interference with fundamental processes such as maintenance of osmoregulation, gas exchange and xenobiotic metabolism in the exposed fish populations.


Environmental Toxicology and Pharmacology | 2005

Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch).

Suhel Parvez; Sheikh Raisuddin

It has been established in mammalian system including humans that direct damage to proteins or chemical modification of amino acids in proteins during oxidative stress can give rise to protein carbonyls. Protein carbonyl induction, as a biomarker of oxidative stress was used in laboratory studies to assess the toxic effects of pesticides in freshwater fish, Channa punctata (Bloch), exposed to deltamethrin, endosulfan and paraquat. Protein carbonyls were measured in gills, kidney and liver. Significant (P<0.05-0.001) increase in protein carbonyls was observed in response to single 48h exposure to various pesticides in all the tissues. The time kinetics study involving deltamethrin (0.75μg/L) also showed a significant (P<0.05-0.001) induction of protein carbonyls in all the organs. The induction was significant (P<0.05-0.001) in all the durations of exposure (12h, 96h, 7 days, 14 days, 28 days). However, relatively pronounced induction was observed during shorter duration of exposure. The findings of the present investigation showed that deltamethrin had the maximum oxidative stress-inducing potential among the three pesticides used and gills are the most sensitive organs prone to oxidative damage. It is suggested that measurement of carbonyl groups may provide a convenient technique for detecting and quantifying oxidative modification of proteins during oxidative stress. The induction of protein carbonyl in fish was identified as a potentially useful biomarker of oxidative stress that warrants its application in the field investigations.


International Immunopharmacology | 2003

IMMUNOMODULATORY EFFECTS OF FENUGREEK (TRIGONELLA FOENUM GRAECUM L.) EXTRACT IN MICE

Bilal Bin-Hafeez; Rizwanul Haque; Suhel Parvez; Suwarna Pandey; Iqbal Sayeed; Sheikh Raisuddin

Immunomodulatory activity of aqueous extract of Trigonella foenum graecum L., a widely used medicinal and dietary herb, was evaluated in male Swiss albino mice. Mice were treated with three doses of extract (50, 100 and 250 mg/kg body weight per os) for 10 days. Body weight, relative organ weight, cellularity of lymphoid organs, delayed type of hypersensitivity (DTH) response, plaque-forming cell (PFC) assay, haemagglutination titre (HT), quantitative haemolysis of SRBC (QHS) assay, phagocytosis, and lymphoproliferation were studied in various groups of animals. At doses of 50 and 100 mg/kg, a significant increase (p < 0.05) in relative organ weight of thymus was observed but there was no effect on kidney and spleen weights. Liver weight also increased significantly at doses of 100 and 250 mg/kg. However, no elevation in the levels of liver function test (LFT) enzymes was observed. As regards lymphoid organ cellularity, spleen recorded no significant increase at any dose, whereas cellularities of thymus and bone marrow were significantly increased. T. foenum graecum extract elicited a significant (p < 0.001) increase in the DTH response at doses of 50 and 100 mg/kg, but the change at higher dose of 250 mg/kg was not statistically significant. Humoral immunity as measured by PFC showed an elevated response at a dose of 100 mg/kg, but at 50 and 250 mg/kg, no significant effect was observed. In the HT test, plant extract also showed modulatory effect at all the doses. Plant extract elicited a significant increase in phagocytic index and phagocytic capacity of macrophages. Stimulatory response of plant extract was also observed in lymphoproliferation assay but the response was weak. Overall, T. foenum graecum showed a stimulatory effect on immune functions in mice. As it is used for a variety of medicinal purposes, its immunostimulatory effect, as reported in this study, strengthens the rationale of its use in several Ayurvedic and Unani drugs.


The FASEB Journal | 2008

STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation

Suhel Parvez; Andreas Beck; Christine Peinelt; Jonathan Soboloff; Annette Lis; Mahealani K. Monteilh-Zoller; Donald L. Gill; Andrea Fleig; Reinhold Penner

STIM1 and CRACM1 (or Orai1) are essential molecular components mediating store‐oper‐ated Ca2+ entry (SOCE) and Ca2+ release‐activated Ca2+ (CRAC) currents. Although STIM1 acts as a luminal Ca2+ sensor in the endoplasmic reticulum (ER), the function of STIM2 remains unclear. Here we reveal that STIM2 has two distinct modes of activating CRAC channels: a store‐operated mode that is activated through depletion of ER Ca2+ stores by inositol 1,4,5‐trisphosphate (InsP3) and store‐independent activation that is mediated by cell dialysis during whole‐cell perfusion. Both modes are regulated by calmodulin (CaM). The store‐operated mode is transient in intact cells, possibly reflecting recruitment of CaM, whereas loss of CaM in perfused cells accounts for the persistence of the store‐independent mode. The inhibition by CaM can be reversed by 2‐aminoethoxydiphenyl borate (2‐APB), resulting in rapid, store‐independent activation of CRAC channels. The aminoglycoside antibiotic G418 is a highly specific and potent inhibitor of STIM2‐dependent CRAC channel activation. The results reveal a novel bimodal control of CRAC channels by STIM2, the store dependence and CaM regulation, which indicates that the STIM2/CRACM1 complex may be under the control of both luminal and cytoplasmic Ca2+ levels.—Parvez S., Beck, A., Peinelt, C., Soboloff, J., Lis, A., Monteilh‐Zoller, M., Gill, D. L., Fleig, A., Penner R. STIM2 protein mediates distinct store‐dependent and store‐independent modes of CRAC channel activation. FASEB J. 22, 752–761 (2008)


Human & Experimental Toxicology | 2003

Aqueous extract of walnut (Juglans regia L.) protects mice against cyclophosphamide-induced biochemical toxicity.

Rizwanul Haque; B Bin-Hafeez; Suhel Parvez; Suwarna Pandey; Iqbal Sayeed; Mehboob Ali; Sheikh Raisuddin

Walnut (Juglans regia L.) is extensively used in traditional systems of medicine for treatment of various ailments. It is described as an anticancer, tonic, blood purifier and detoxifier agent. The present study was undertaken to investigate modulatory effects of walnut extract on the toxicity of an anticancer drug, cyclophosphamide (CP) with special reference to protection against disruption of drug metabolizing and antioxidant enzymes. Plant extract+CP group animals showed restoration in the level of cytochrome P450 (CYP) content and in the activities of glutathione S-transferase (GST), glutathione peroxidase (GP) and catalase (CAT) in both liver and kidneys. But plant extract restored the activity of super oxide dismutase (SOD) and the level of reduced glutathione (GSH) in the kidneys only when compared with CP-treated animals. Plant extract treatment alone caused significant reduction in the content of CYP in the kidneys mainly. The extract showed a significant increase in the level of GSH and in the activities of GP in both the tissues and CAT in liver only, whereas no significant change was observed in the activities of GST and SOD. CP treatment resulted in a significant (P<0.01) increase in the lipid peroxidation (LPO) in the liver and kidneys compared with controls, while the extract CP treated group showed a significant decrease in the LPO in liver and kidneys when compared with the CP-treated group. The study shows that the use of J. regia extract might be helpful in abrogation of CP toxicity during the chemotherapy.


Basic & Clinical Pharmacology & Toxicology | 2008

Taurine Prevents Tamoxifen-Induced Mitochondrial Oxidative Damage in Mice

Suhel Parvez; Heena Tabassum; Basu Dev Banerjee; Sheikh Raisuddin

Tamoxifen is a selective oestrogen receptor modulator widely used in the treatment of breast cancer. Tamoxifen potentially affects mitochondrial functions as it acts as an uncoupling agent and a powerful inhibitor of mitochondrial electron transport chain. There is concern for the deleterious effects of tamoxifen. Taurine is known to have membrane stabilizing and antioxidant properties. We studied effect of taurine pre-treatment on the toxicity of tamoxifen in mouse liver mitochondria focusing specifically on the redox cycle biomarkers. Tamoxifen caused a significant rise in the mitochondrial lipid peroxidation, protein carbonyl content and superoxide radical generation. There was a significant change in the mitochondrial thiol profile in the tamoxifen-treated animals. Pre-treatment of mice with taurine (100 mg/kg) markedly lowered mitochondrial lipid peroxidation, protein carbonyl content and superoxide radical generation. It also restored decreased enzymatic and non-enzymatic antioxidants of mitochondria. It is suggested that taurine has a potential role in ameliorating tamoxifen-induced mitochondrial toxicity, and the protection is afforded either by reversing the decline of antioxidants or by the direct free radical-scavenging activity.


PLOS ONE | 2008

Clofazimine Inhibits Human Kv1.3 Potassium Channel by Perturbing Calcium Oscillation in T Lymphocytes

Yunzhao R. Ren; Fan Pan; Suhel Parvez; Andrea Fleig; Curtis R. Chong; Jing-Jing Xu; Yongjun Dang; Jin-Long Zhang; Hongsi Jiang; Reinhold Penner; Jun O. Liu

The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders.

Collaboration


Dive into the Suhel Parvez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge