Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sui Mae Lee is active.

Publication


Featured researches published by Sui Mae Lee.


ACS Applied Materials & Interfaces | 2017

Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications

Maziyar Makaremi; Pooria Pasbakhsh; Giuseppe Cavallaro; Giuseppe Lazzara; Yoong Kit Aw; Sui Mae Lee; Stefana Milioto

Pectin bionanocomposite films filled with various concentrations of two different types of halloysite nanotubes were prepared and characterized in this study as potential films for food packaging applications. The two types of halloysite nanotubes were long and thin (patch) (200-30 000 nm length) and short and stubby (Matauri Bay) (50-3000 nm length) with different morphological, physical, and dispersibility properties. Both matrix (pectin) and reinforcer (halloysite nanotubes) used in this study are considered as biocompatible, natural, and low-cost materials. Various characterization tests including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, release kinetics, contact angle, and dynamic mechanical analysis were performed to evaluate the performance of the pectin films. Exceptional thermal, tensile, and contact angle properties have been achieved for films reinforced by patch halloysite nanotubes due to the patchy and lengthy nature of these tubes, which form a bird nest structure in the pectin matrix. Matauri Bay halloysite nanotubes were dispersed uniformly and individually in the matrix in low and even high halloysite nanotube concentrations. Furthermore, salicylic acid as a biocidal agent was encapsulated in the halloysite nanotubes lumen to control its release kinetics. On this basis, halloysite nanotubes/salicylic acid hybrids were dispersed into the pectin matrix to develop functional biofilms with antimicrobial properties that can be extended over time. Results revealed that shorter nanotubes (Matauri Bay) had better ability for the encapsulation of salicylic acid into their lumen, while patchy structure and longer tubes of patch halloysite nanotubes made the encapsulation process more difficult, as they might need more time and energy to be fully loaded by salicylic acid. Moreover, antimicrobial activity of the films against four different strains of Gram-positive and Gram-negative bacteria indicated the effective antimicrobial properties of pectin/halloysite functionalized films and their potential to be used for food packaging applications.


Applied and Environmental Microbiology | 2014

Does Campylobacter jejuni Form Biofilms in Food-Related Environments?

Amy Huei Teen Teh; Sui Mae Lee; Gary A. Dykes

ABSTRACT Campylobacter jejuni is one of the most frequent causes of bacterial gastrointestinal food-borne infection worldwide. This species is part of the normal flora of the gastrointestinal tracts of animals used for food production, including poultry, which is regarded as the primary source of human Campylobacter infections. The survival and persistence of C. jejuni in food processing environments, especially in poultry processing plants, represent significant risk factors that contribute to the spread of this pathogen through the food chain. Compared to other food-borne pathogens, C. jejuni is more fastidious in its growth requirements and is very susceptible to various environmental stressors. Biofilm formation is suggested to play a significant role in the survival of C. jejuni in the food production and processing environment. The aims of this minireview were (i) to examine the evidence that C. jejuni forms biofilms and (ii) to establish the extent to which reported and largely laboratory-based studies of C. jejuni biofilms provide evidence for biofilm formation by this pathogen in food processing environments. Overall existing studies do not provide strong evidence for biofilm formation (as usually defined) by most C. jejuni strains in food-related environments under the combined conditions of atmosphere, temperature, and shear that they are likely to encounter. Simple attachment to and survival on surfaces and in existing biofilms of other species are far more likely to contribute to C. jejuni survival in food-related environments based on our current understanding of this species.


Biofouling | 2013

Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans

Yi Wang; Sui Mae Lee; Gary A. Dykes

Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.


Frontiers in Microbiology | 2016

Burkholderia paludis sp. nov., an Antibiotic-Siderophore Producing Novel Burkholderia cepacia Complex Species, Isolated from Malaysian Tropical Peat Swamp Soil

Kuan Shion Ong; Yoong Kit Aw; Learn-Han Lee; Catherine M. Yule; Yuen Lin Cheow; Sui Mae Lee

A novel Gram negative rod-shaped bacterium, designated strain MSh1T, was isolated from Southeast Pahang tropical peat swamp forest soil in Malaysia and characterized using a polyphasic taxonomy approach. The predominant cellular fatty acids (>10.0%) were C16:0 (31.7%), C17:0 cyclo (26.6%), and C19:0 cyclo ω8c (16.1%). The polar lipids detected were phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. The predominant ubiquinone was Q-8. This revealed that strain MSh1T belongs to the genus Burkholderia. The type strain MSh1T can be differentiated from other Burkholderia cepacia complex (Bcc) species by phylogenetic analysis of 16S rRNA gene sequence, multilocus sequence analysis (MLSA), average nucleotide identity (ANI) and biochemical tests. DNA–DNA relatedness values between strain MSh1T and closely related type strains were below the 70% threshold value. Based on this polyphasic study of MSh1T, it can be concluded that this strain represents a novel species within the Bcc, for which the name Burkholderia paludis sp. nov. is proposed. The type strain is MSh1T (= DSM 100703T = MCCC 1K01245T). The dichloromethane extract of MSh1T exhibited antimicrobial activity against four Gram positive bacteria (Enterococcus faecalis ATCC 29212, E. faecalis ATCC 700802, Staphylococcus aureus ATCC 29213, S. aureus ATCC 700699) and a Gram negative bacteria (Escherichia coli ATCC 25922). Further purification work has led to the isolation of Compound 1, pyochelin. Pyochelin demonstrated antimicrobial activity against four S. aureus strains and three E. faecalis strains with MIC-values of 3.13 μg/ml and 6.26 μg/ml, respectively. SEM analysis showed that the cellular morphology of E. faecalis ATCC 700802 was not affected by pyochelin; suggesting that it might target the intracellular components. Pyochelin, a siderophore with antimicrobial activity might be useful in treating bacterial infections caused by S. aureus and E. faecalis, however further work has to be done.


Applied and Environmental Microbiology | 2015

Public Health Risks of Multiple-Drug-Resistant Enterococcus spp. in Southeast Asia.

Diane Sunira Daniel; Sui Mae Lee; Gary A. Dykes; Sadequr Rahman

ABSTRACT Enterococci rank as one of the leading causes of nosocomial infections, such as urinary tract infections, surgical wound infections, and endocarditis, in humans. These infections can be hard to treat because of the rising incidence of antibiotic resistance. Enterococci inhabiting nonhuman reservoirs appear to play a critical role in the acquisition and dissemination of antibiotic resistance determinants. The spread of antibiotic resistance has become a major concern in both human and veterinary medicine, especially in Southeast Asia, where many developing countries have poor legislation and regulations to control the supply and excessive use of antimicrobials. This review addresses the occurrence of antibiotic-resistant enterococci in Association of Southeast Asian Nations countries and proposes infection control measures that should be applied to limit the spread of multiple-drug-resistant enterococci.


RSC Advances | 2016

Electrospun functionalized polyacrylonitrile–chitosan Bi-layer membranes for water filtration applications

Maziyar Makaremi; Chia Xin Lim; Pooria Pasbakhsh; Sui Mae Lee; Kheng Lim Goh; Hengky Chang; Eng-Seng Chan

Water scarcity has become a global systemic risk, prompting the development of more efficient filtration technologies. Recently, increasing attention has been given to low cost membrane materials such as polyacrylonitrile (PAN) nanofibers for water filtration. In this study, electrospun PAN nanofibrous membranes were functionalized with zinc oxide (ZnO) nanoparticles and coated with a layer of electrospun chitosan (Cs), in order to improve the mechanical properties, and anti-bacterial and water filtration performance of the membranes. Morphological analysis revealed that the PAN/ZnO–Cs membranes featured a structural hierarchy comprising a layer of highly porous nanofibrous PAN membranes and a less fibrous and thinner layer of a Cs coating. Addition of the Cs layer increases the tensile strength and elastic modulus of the membranes. Results acquired from a water permeability test indicated that the bi-layer membranes possessed adequate transport properties for typical membrane applications. Furthermore, the additional Cs layer and ZnO nanoparticles significantly improved the heavy metal ion adsorption performance of the PAN membranes. Moreover, the efficiency of the PAN/ZnO–Cs membrane for bacteria filtration has a log reduction value 2 orders of magnitude higher than PAN membranes, while the efficiency of these membranes for antibacterial action (i.e. in terms of log reduction value) is 6 orders of magnitude higher than PAN membranes. These results indicate the PAN/ZnO–Cs membranes are structurally more stable than PAN membranes, better at bacteria removal during the filtration process and better at self-cleaning (i.e. membrane biofouling resistance) than PAN membranes, signifying the potential of these membranes for water filtration applications.


BMC Research Notes | 2013

Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components

Yi Wang; Felicia Fl Chung; Sui Mae Lee; Gary A. Dykes

BackgroundTea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.FindingsThis study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small.ConclusionsPu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues.


Critical Reviews in Microbiology | 2015

The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies

Yi Wang; Sui Mae Lee; Gary A. Dykes

Abstract Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.


Antioxidants | 2014

Antioxidant Content, Antioxidant Activity, and Antibacterial Activity of Five Plants from the Commelinaceae Family

Joash Ban Lee Tan; Wei Jin Yap; Shen Yeng Tan; Yau Yan Lim; Sui Mae Lee

Commelinaceae is a family of herbaceous flowering plants with many species used in ethnobotany, particularly in South America. However, thus far reports of their bioactivity are few and far between. The primary aim of this study was to quantify the antioxidant and antibacterial activity of five Commelinaceae methanolic leaf extracts. The antioxidant content was evaluated by the total phenolic content (TPC), total tannin content (TTC), and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH free radical scavenging (FRS), ferric reducing power (FRP), and ferrous ion chelating (FIC); of the five plants, the methanolic leaf extract of Tradescantia zebrina showed the highest antioxidant content and activity, and exhibited antibacterial activity against six species of Gram-positive and two species of Gram-negative bacteria in a range of 5–10 mg/mL based on the broth microdilution method.


Journal of Food Science and Technology-mysore | 2015

Antioxidant and antibacterial activity of Rhoeo spathacea (Swartz) Stearn leaves

Joash Ban Lee Tan; Yau Yan Lim; Sui Mae Lee

The decoction and infusion of Rhoeo spathacea (Swartz) Stearn leaves have been recognized as a functional food particularly in South America, but has not yet gained international popularity as a beverage. The primary aim of this study was to establish the viability of R. spathacea aqueous leaf extracts as a beverage, in terms of its antioxidant activity and antibacterial activity. The antioxidant contents of aqueous and methanol leaf extracts were evaluated by the total phenolic content (TPC) and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH radical scavenging activity (FRS), ferric reducing power (FRP) and ferrous ion chelating (FIC) activity. The aqueous leaf extracts in the forms of decoction and infusion, were found to have comparable TPC and antioxidant activity with other herbal teas previously reported by our research group. Both decoction and infusion also exhibited antibacterial activity against six species of Gram positive and four species of Gram negative bacteria, notably methicillin-resistant Staphylococcus aureus and Neisseria gonorrhoeae. A total of four different known phenolic compounds were identified by HPLC and MS, three of which have not been previously reported to be found in this plant. Both the decoction and infusion of the leaves R. spathacea have potential to be popularized into a common beverage.

Collaboration


Dive into the Sui Mae Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuan Shion Ong

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yau Yan Lim

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joash Ban Lee Tan

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar

Pooria Pasbakhsh

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge