Sujan Shresta
La Jolla Institute for Allergy and Immunology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sujan Shresta.
Journal of Virology | 2006
Sujan Shresta; Kristin L. Sharar; Daniil M. Prigozhin; P. Robert Beatty; Eva Harris
ABSTRACT Lack of an appropriate animal model for dengue virus (DEN), which causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), has impeded characterization of the mechanisms underlying the disease pathogenesis. The cardinal feature of DHF/DSS, the severe form of DEN infection, is increased vascular permeability. To develop a murine model that is more relevant to DHF/DSS, a novel DEN strain, D2S10, was generated by alternately passaging a non-mouse-adapted DEN strain between mosquito cells and mice, thereby mimicking the natural transmission cycle of the virus between mosquitoes and humans. After infection with D2S10, mice lacking interferon receptors died early without manifesting signs of paralysis, carried infectious virus in both non-neuronal and neuronal tissues, and exhibited signs of increased vascular permeability. In contrast, mice infected with the parental DEN strain developed paralysis at late times after infection, contained detectable levels of virus only in the central nervous system, and displayed normal vascular permeability. In the mice infected with D2S10, but not the parental DEN strain, significant levels of serum tumor necrosis factor alpha (TNF-α) were produced, and the neutralization of TNF-α activity prevented early death of D2S10-infected mice. Sequence analysis comparing D2S10 to its parental strain implicated a conserved region of amino acid residues in the envelope protein as a possible source for the D2S10 phenotype. These results demonstrate that D2S10 causes a more relevant disease in mice and that TNF-α may be one of several key mediators of severe DEN-induced disease in mice. This report represents a significant advance in animal models for severe DEN disease, and it begins to provide mechanistic insights into DEN-induced disease in vivo.
Journal of Virology | 2004
Sujan Shresta; Jennifer L. Kyle; Heidi M. Snider; Manasa Basavapatna; P. Robert Beatty; Eva Harris
ABSTRACT Dengue virus (DEN) causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome, which are major public health problems worldwide. The immune factors that control DEN infection or contribute to severe disease are neither well understood nor easy to examine in humans. In this study, we used wild-type and congenic mice lacking various components of the immune system to study the immune mechanisms in the response to DEN infection. Our results demonstrate that alpha/beta interferon (IFN-α/β) and IFN-γ receptors have critical, nonoverlapping functions in resolving primary DEN infection. Furthermore, we show that IFN-α/β receptor-mediated action limits initial DEN replication in extraneural sites and controls subsequent viral spread into the central nervous system (CNS). In contrast, IFN-γ receptor-mediated responses seem to act at later stages of DEN disease by restricting viral replication in the periphery and eliminating virus from the CNS. Mice deficient in B, CD4+ T, or CD8+ T cells had no increased susceptibility to DEN; however, RAG mice (deficient in both B and T cells) were partially susceptible to DEN infection. In summary, (i) IFN-α/β is critical for early immune responses to DEN infection, (ii) IFN-γ-mediated immune responses are crucial for both early and late clearance of DEN infection in mice, and (iii) the IFN system plays a more important role than T- and B-cell-dependent immunity in resistance to primary DEN infection in mice.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Daniela Weiskopf; Michael A. Angelo; Elzinandes Leal de Azeredo; John Sidney; Jason Greenbaum; Anira N. Fernando; Anne Broadwater; Ravi Kolla; Aruna Dharshan De Silva; Aravinda M. de Silva; Kimberly Mattia; Benjamin J. Doranz; Howard M. Grey; Sujan Shresta; Bjoern Peters; Alessandro Sette
Significance Dengue virus is the etiologic agent of dengue fever, the most significant mosquito-borne viral disease in humans, affecting over 100 million individuals each year. Currently there is no licensed vaccine or effective antiviral therapy available, and treatment is largely supportive in nature. This study presents a comprehensive analysis of functional T-cell memory against dengue viruses and suggests an HLA-linked protective role for CD8+ T cells. This demonstration of the protective role of T-cell responses points the way forward to identifying robust correlates of protection in natural immunity and vaccination against dengue virus. The role of CD8+ T cells in dengue virus infection and subsequent disease manifestations is not fully understood. According to the original antigenic sin theory, skewing of T-cell responses induced by primary infection with one serotype causes less effective response upon secondary infection with a different serotype, predisposing individuals to severe disease. A comprehensive analysis of CD8+ responses in the general population from the Sri Lankan hyperendemic area, involving the measurement of ex vivo IFNγ responses associated with more than 400 epitopes, challenges the original antigenic sin theory. Although skewing of responses toward primary infecting viruses was detected, this was not associated with impairment of responses either qualitatively or quantitatively. Furthermore, we demonstrate higher magnitude and more polyfunctional responses for HLA alleles associated with decreased susceptibility to severe disease, suggesting that a vigorous response by multifunctional CD8+ T cells is associated with protection from dengue virus disease.
Cell Host & Microbe | 2010
Raphaël M. Zellweger; Tyler R. Prestwood; Sujan Shresta
Dengue virus (DENV) causes disease ranging from dengue fever (DF), a self-limited febrile illness, to the potentially lethal dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). DHF/DSS usually occurs in patients who have acquired DENV-reactive antibodies prior to infection, either from a previous infection with a heterologous DENV serotype or from an immune mother. Hence, it has been hypothesized that subneutralizing levels of antibodies exacerbate disease, a phenomenon termed antibody-dependent enhancement (ADE). However, given the lack of suitable animal models for DENV infection, the mechanism of ADE and its contribution to pathology remain elusive. Here we demonstrate in mice that DENV-specific antibodies can sufficiently increase severity of disease so that a mostly nonlethal illness becomes a fatal disease resembling human DHF/DSS. Antibodies promote massive infection of liver sinusoidal endothelial cells (LSECs), resulting in increased systemic levels of virus. Thus, a subprotective humoral response may, under some circumstances, have pathological consequences.
Journal of Immunology | 2009
Lauren E. Yauch; Raphaël M. Zellweger; Maya F. Kotturi; Afrina Qutubuddin; John Sidney; Bjoern Peters; Tyler R. Prestwood; Alessandro Sette; Sujan Shresta
Infection with one of the four serotypes of dengue virus (DENV1–4) can result in a range of clinical manifestations in humans, from dengue fever to the more serious dengue hemorrhagic fever/dengue shock syndrome. Although T cells have been implicated in the immunopathogenesis of secondary infections with heterologous DENV serotypes, the role of T cells in protection against DENV is unknown. In this study, we used a mouse-passaged DENV2 strain, S221, to investigate the role of CD8+ T cells in the immune response to primary DENV infection. S221 did not replicate well in wild-type mice, but did induce a CD8+ T cell response, whereas viral replication and a robust CD8+ T cell response were observed after infection of IFN-α/βR−/− mice. Depletion of CD8+ T cells from IFN-α/βR−/− mice before infection resulted in significantly higher viral loads compared with undepleted mice. Mapping the specificity of the CD8+ T cell response led to the identification of 12 epitopes derived from 6 of the 10 DENV proteins, with a similar immunodominance hierarchy observed in wild-type and IFN-α/βR−/− mice. DENV-specific CD8+ T cells produced IFN-γ, TNF-α, expressed cell surface CD107a, and exhibited cytotoxic activity in vivo. Finally, immunization with four of the immunodominant CD8+ T cell epitopes enhanced viral clearance. Collectively, our results reveal an important role for CD8+ T cells in the host defense against DENV and demonstrate that the anti-DENV CD8+ T cell response can be enhanced by immunization, providing rationale for designing DENV-specific vaccines that induce cell-mediated immunity.
Cell | 2017
Justin M. Richner; Sunny Himansu; Kimberly A. Dowd; Scott L. Butler; Vanessa Salazar; Julie M. Fox; Justin G. Julander; William W. Tang; Sujan Shresta; Theodore C. Pierson; Giuseppe Ciaramella; Michael S. Diamond
The emergence of ZIKV infection has prompted a global effort to develop safe and effective vaccines. We engineered a lipid nanoparticle (LNP) encapsulated modified mRNA vaccine encoding wild-type or variant ZIKV structural genes and tested immunogenicity and protection in mice. Two doses of modified mRNA LNPs encoding prM-E genes that produced virus-like particles resulted in high neutralizing antibody titers (∼1/100,000) that protected against ZIKV infection and conferred sterilizing immunity. To offset a theoretical concern of ZIKV vaccines inducing antibodies that cross-react with the related dengue virus (DENV), we designed modified prM-E RNA encoding mutations destroying the conserved fusion-loop epitope in the E protein. This variant protected against ZIKV and diminished production of antibodies enhancing DENV infection in cells or mice. A modified mRNA vaccine can prevent ZIKV disease and be adapted to reduce the risk of sensitizing individuals to subsequent exposure to DENV, should this become a clinically relevant concern.
Antiviral Research | 2008
Lauren E. Yauch; Sujan Shresta
Dengue virus (DENV) causes the most significant mosquito-borne viral disease in the world in terms of illness, death, and economic cost, due to the lack of an approved vaccine or antiviral. Infections with one of the four serotypes of DENV (DENV1-4) can result in diseases ranging from an acute, self-limiting febrile illness (dengue fever, DF) to life-threatening dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), yet exactly how viral and host factors contribute to the severe disease is unknown. Clinical observations have provided information on DENV pathogenesis, but the lack of an adequate animal model has hindered research on this important human pathogen. A mouse model is ideal for investigating host-pathogen interactions due to the immunological tools available, however, wild-type mice are resistant to DENV-induced disease. Therefore, the mouse models for DENV infection developed to date include infection of severely immunocompromised mice, non-physiologic routes of infection, and mouse-human chimeras, which all have their limitations. An inbred mouse model in which mice develop signs of human DENV-induced disease is needed to investigate the contribution of various immune components to protection and pathogenesis of DENV infections, and to test the efficacy of DENV vaccines and antivirals.
Journal of Immunology | 2010
Lauren E. Yauch; Tyler R. Prestwood; Monica M. May; Malika M. Morar; Raphaël M. Zellweger; Bjoern Peters; Alessandro Sette; Sujan Shresta
The contribution of T cells to the host response to dengue virus (DENV) infection is not well understood. We previously demonstrated a protective role for CD8+ T cells during primary DENV infection using a mouse-passaged DENV strain and IFN-α/βR−/− C57BL/6 mice, which are susceptible to DENV infection. In this study, we examine the role of CD4+ T cells during primary DENV infection. Four I-Ab–restricted epitopes derived from three of the nonstructural DENV proteins were identified. CD4+ T cells expanded and were activated after DENV infection, with peak activation occurring on day 7. The DENV-specific CD4+ T cells expressed intracellular IFN-γ, TNF, IL-2, and CD40L, and killed peptide-pulsed target cells in vivo. Surprisingly, depletion of CD4+ T cells before DENV infection had no effect on viral loads. Consistent with this observation, CD4+ T cell depletion did not affect the DENV-specific IgG or IgM Ab titers or their neutralizing activity, or the DENV-specific CD8+ T cell response. However, immunization with the CD4+ T cell epitopes before infection resulted in significantly lower viral loads. Thus, we conclude that whereas CD4+ T cells are not required for controlling primary DENV infection, their induction by immunization can contribute to viral clearance. These findings suggest inducing anti-DENV CD4+ T cell responses by vaccination may be beneficial.
Journal of Virology | 2008
Tyler R. Prestwood; Daniil M. Prigozhin; Kristin L. Sharar; Raphaël M. Zellweger; Sujan Shresta
ABSTRACT The four serotypes of dengue virus (DENV1 to DENV4) cause extensive morbidity and mortality. A major obstacle to studying disease pathogenesis and developing therapies has been the lack of a small-animal model. We previously reported isolation of a DENV2 strain, obtained by passaging a clinical isolate between mosquito cells and mice, that caused severe DENV disease in mice and contained multiple mutations, including many in domain II of the envelope (E) protein. Here, we describe a recombinant virus, differing from the non-mouse-passaged virus by two mutations in the E protein, that induces vascular leakage and tumor necrosis factor alpha (TNF-α)-mediated lethality, while the non-mouse-passaged virus causes paralysis. This recombinant virus has a weaker affinity for heparan sulfate, resulting in an increased serum half-life, higher systemic viral loads, and high levels of TNF-α in the serum of infected mice. These results exemplify the role of the E protein in modulating virion clearance and connect the effect of clearance on the systemic viral loads responsible for severe disease manifestations.
PLOS Pathogens | 2011
Stuart T. Perry; Michael D. Buck; Steven M. Lada; Christian Schindler; Sujan Shresta
Dengue virus (DENV) is a mosquito-borne flavivirus, and symptoms of infection range from asymptomatic to the severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). High viral loads correlate with disease severity, and both type I & II interferons (IFNs) are crucial for controlling viral replication. We have previously reported that signal transducer and activator of transcription (STAT) 1-deficient mice are resistant to DENV-induced disease, but little is known about this STAT1-independent mechanism of protection. To determine the molecular basis of the STAT1-independent pathway, mice lacking STAT1, STAT2, or both STAT1 and STAT2 were infected with a virulent mouse-adapted strain of DENV2. In the first 72 hours of infection, the single-deficient mice lacking STAT1 or STAT2 possessed 50–100 fold higher levels of viral RNA than wild type mice in the serum, spleen, and other visceral tissues, but remained resistant to DENV-induced death. In contrast, the double-deficient mice exhibited the early death phenotype previously observed in type I and II IFN receptor knockout mice (AG129), indicating that STAT2 is the mediator of the STAT1-independent host defense mechanism. Further studies demonstrated that this STAT2-dependent STAT1-independent mechanism requires the type I IFN receptor, and contributes to the autocrine amplification of type I IFN expression. Examination of gene expression in the spleen and bone marrow-derived macrophages following DENV infection revealed STAT2-dependent pathways can induce the transcription of a subset of interferon stimulated genes even in the absence of STAT1. Collectively, these results help elucidate the nature of the poorly understood STAT1-independent host defense mechanism against viruses by identifying a functional type I IFN/STAT2 signaling pathway following DENV infection in vivo.