Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sujan Timilsina is active.

Publication


Featured researches published by Sujan Timilsina.


Molecular Plant Pathology | 2015

Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge

Neha Potnis; Sujan Timilsina; Amanda Strayer; Deepak Shantharaj; Jeri D. Barak; Mathews L. Paret; Gary E. Vallad; Jeffrey B. Jones

TAXONOMIC STATUS Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas euvesicatoria, Xanthomonas vesicatoria, Xanthomonas perforans and Xanthomonas gardneri. MICROBIOLOGICAL PROPERTIES Gram-negative, rod-shaped bacterium, aerobic, motile, single polar flagellum. HOST RANGE Causes bacterial spot disease on plants belonging to the Solanaceae family, primarily tomato (Solanum lycopersicum), pepper (Capsicum annuum) and chilli peppers (Capsicum frutescens). DISEASE SYMPTOMS Necrotic lesions on all above-ground plant parts. DISTRIBUTION Worldwide distribution of X. euvesicatoria and X. vesicatoria on tomato and pepper; X. perforans and X. gardneri increasingly being isolated from the USA, Canada, South America, Africa and Europe. A wide diversity within the bacterial spot disease complex, with an ability to cause disease at different temperatures, makes this pathogen group a worldwide threat to tomato and pepper production. Recent advances in genome analyses have revealed the evolution of the pathogen with a plethora of novel virulence factors. Current management strategies rely on the use of various chemical control strategies and sanitary measures to minimize pathogen spread through contaminated seed. Chemical control strategies have been a challenge because of resistance by the pathogen. Breeding programmes have been successful in developing commercial lines with hypersensitive and quantitative resistance. However, durability of resistance has been elusive. Recently, a transgenic approach has resulted in the development of tomato genotypes with significant levels of resistance and improved yield that hold promise. In this article, we discuss the current taxonomic status, distribution of the four species, knowledge of virulence factors, detection methods and strategies for disease control with possible directions for future research.


Frontiers in Microbiology | 2015

Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity

Allison R. Schwartz; Neha Potnis; Sujan Timilsina; Mark C. Wilson; José S. L. Patané; Joaquim Martins; Gerald V. Minsavage; Douglas Dahlbeck; Alina Akhunova; Nalvo F. Almeida; Gary E. Vallad; Jeri D. Barak; Frank F. White; Sally A. Miller; David F. Ritchie; Erica M. Goss; Rebecca Bart; João C. Setubal; Jeffrey B. Jones; Brian J. Staskawicz

Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors.


Applied and Environmental Microbiology | 2015

Multilocus Sequence Analysis of Xanthomonads Causing Bacterial Spot of Tomato and Pepper Plants Reveals Strains Generated by Recombination among Species and Recent Global Spread of Xanthomonas gardneri

Sujan Timilsina; Mustafa O. Jibrin; Neha Potnis; Gerald V. Minsavage; Misrak Kebede; Allison R. Schwartz; Rebecca Bart; Brian J. Staskawicz; Claudine Boyer; Gary E. Vallad; Olivier Pruvost; Jeffrey B. Jones; Erica M. Goss

ABSTRACT Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations.


European Journal of Plant Pathology | 2014

Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia

Misrak Kebede; Sujan Timilsina; Amare Ayalew; Belayneh Admassu; Neha Potnis; Gerald V. Minsavage; Erica M. Goss; Jason C. Hong; Amanda Strayer; Mathews L. Paret; Jeffrey B. Jones; Gary E. Vallad

Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis (MLSA), we identified a diverse group of Xanthomonas strains isolated from central Ethiopia. None of the strains were sensitive to copper or streptomycin. Multilocus sequence analysis was used to compare Ethiopian strains with representative Xanthomonas strains from a worldwide collection based on DNA sequences of six housekeeping genes (lacF, lepA, gyrB, fusA, gltA and gapA) and hrpB genes. Phylogenetic analysis of the concatenated sequences showed that X. gardneri, X. vesicatoria and X. perforans were associated with BST in Ethiopia, whereas Xanthomonas euvesicatoria was absent from the Ethiopian sample. There was no genetic diversity among the isolated strains belonging to X. gardneri and X. perforans. However, two X. vesicatoria haplotypes were identified indicating at least two different sources of introduction of X. vesicatoria to Ethiopia. All of the X. perforans strains were only pathogenic on tomato and were T3 strains with the exception of one identified as tomato race 4 (T4). The X. gardneri and X. vesicatoria strains were tomato race 2 (T2), but were variable in pepper race determinations indicating variation in effectors among strains.


Frontiers in Plant Science | 2016

Whole-Genome Sequences of Xanthomonas euvesicatoria Strains Clarify Taxonomy and Reveal a Stepwise Erosion of Type 3 Effectors

Jeri D. Barak; Taca Vancheva; Pierre Lefeuvre; Jeffrey B. Jones; Sujan Timilsina; Gerald V. Minsavage; Gary E. Vallad; Ralf Koebnik

Multiple species of Xanthomonas cause bacterial spot of tomato (BST) and pepper. We sequenced five Xanthomonas euvesicatoria strains isolated from three continents (Africa, Asia, and South America) to provide a set of representative genomes with temporal and geographic diversity. LMG strains 667, 905, 909, and 933 were pathogenic on tomato and pepper, except LMG 918 elicited a hypersensitive reaction (HR) on tomato. Furthermore, LMG 667, 909, and 918 elicited a HR on Early Cal Wonder 30R containing Bs3. We examined pectolytic activity and starch hydrolysis, two tests which are useful in differentiating X. euvesicatoria from X. perforans, both causal agents of BST. LMG strains 905, 909, 918, and 933 were nonpectolytic while only LMG 918 was amylolytic. These results suggest that LMG 918 is atypical of X. euvesicatoria. Sequence analysis of all the publicly available X. euvesicatoria and X. perforans strains comparing seven housekeeping genes identified seven haplotypes with few polymorphisms. Whole genome comparison by average nucleotide identity (ANI) resulted in values of >99% among the LMG strains 667, 905, 909, 918, and 933 and X. euvesicatoria strains and >99.6% among the LMG strains and a subset of X. perforans strains. These results suggest that X. euvesicatoria and X. perforans should be considered a single species. ANI values between strains of X. euvesicatoria, X. perforans, X. allii, X. alfalfa subsp. citrumelonis, X. dieffenbachiae, and a recently described pathogen of rose were >97.8% suggesting these pathogens should be a single species and recognized as X. euvesicatoria. Analysis of the newly sequenced X. euvesicatoria strains revealed interesting findings among the type 3 (T3) effectors, relatively ancient stepwise erosion of some T3 effectors, additional X. euvesicatoria-specific T3 effectors among the causal agents of BST, orthologs of avrBs3 and avrBs4, and T3 effectors shared among xanthomonads pathogenic against various hosts. The results from this study supports the finding that T3 effector repertoire and host range are fundamental for the study of host—microbe interaction but of little relevance to bacterial speciation.


Plant Disease | 2015

First report of atypical Xanthomonas euvesicatoria strains causing bacterial spot of tomato in Nigeria.

M.O. Jibrin; Sujan Timilsina; Neha Potnis; Gerald V. Minsavage; K.C. Shenge; A.D. Akpa; M. D. Alegbejo; Fen Beed; Gary E. Vallad; Jeffrey B. Jones

Bacterial spot (BS) is an important disease of tomato in Nigeria (2). Although a xanthomonad was isolated from tomato in Nigeria and characterized using phenotypic and pathogenicity tests, the bacterium was not characterized genetically to confirm the species. To determine the species associated with BS, leaves were collected in fields in northwestern Nigeria from tomato plants showing typical BS symptoms, which consisted of dark, irregular-shaped brown leaf spots that coalesced, resulting in a blighted appearance. Isolations from individual lesions were made on nutrient agar (NA). Yellow, mucoid colonies typical of Xanthomonas were isolated from 14 lesions and all were determined to be amylolytic (3). To determine the races of these strains, bacterial suspensions of the tomato strains, derived from 24-h cultures grown on NA at 28°C, were adjusted to 108 CFU/ml and infiltrated into leaves of tomato and pepper differential genotypes (5). The tomato strains elicited hypersensitive reactions (HRs) on the four pepper differential lines and an HR on the tomato genotype FL 216, which contains the R gene Xv3, but elicited susceptible reactions on the tomato genotypes Hawaii 7998 and Bonny Best. These reactions are typical of X. perforans tomato race 3 strains (5). Multilocus sequence analysis (MLSA) of six housekeeping genes (fusA, lacF, gyrB, gltA, gapA, and lepA) was used to further analyze four representative strains (1) (GenBank Accession Nos. KJ938581 to KJ938584, KJ938588 to KJ938591, KJ938595 to KJ938598, KJ938602 to KJ938605, KJ938629 to KJ938632, and KJ938636 to KJ938639, respectively). A partial sequence of hrpB2 was also made since the four Xanthomonas species associated with BS can be differentiated based on sequence divergence of this gene (3) (KJ938609 to KJ938621 and KJ938628). The housekeeping gene sequences were aligned along with other Xanthomonas sequences imported from the National Center for Biotechnology Information (NCBI) database ( www.ncbi.nlm.nih.gov ) using the MUSCLE tool from MEGA software, 5.2.2. Maximum likelihood phylogenetic trees constructed for the six housekeeping gene sequences individually and in concatenation revealed that the strains grouped most closely with the X. euvesicatoria reference strain 85-10 but more distantly to X. perforans. The hrpB2 sequence, which is highly conserved for each Xanthomonas species pathogenic on tomato (4), was sequenced from the tomato strains. These sequences were identical to the hrpB2 sequence from X. perforans strains but different from X. euvesicatoria. Although BS is common in Nigeria, to our knowledge, this represents a unique group of X. euvesicatoria strains from tomato that are identical to X. perforans based on pathogenic reactions on tomato and pepper and hrpB2 sequence identity but are more closely related to X. euvesicatoria based on the six housekeeping gene sequences. References: (1) N. F. Almeida et al. Phytopathology 100:208, 2010. (2) E. U. Opara and F. J. Odibo. J. Mol. Genet. 1:35, 2009. (3) J. B. Jones et al. Syst. Appl. Microbiol. 27:755, 2004. (4) A. Obradovic et al. Eur. J. Plant Pathol. 88:736, 2004. (5) R. E. Stall et al. Annu. Rev. Phytopathol. 47:265, 2009.


Plant Disease | 2016

A Multiplex Real-Time PCR Assay Differentiates Four Xanthomonas Species Associated with Bacterial Spot of Tomato

Amanda Strayer; A. Jeyaprakash; Gerald V. Minsavage; Sujan Timilsina; Gary E. Vallad; Jeffrey B. Jones; Mathews L. Paret

Bacterial spot of tomato, a major problem in many tomato production areas, is caused by Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri. In order to detect and identify the bacterial spot pathogens, we evaluated a region of hrpB operon as a source for primers and probes for real-time polymerase chain reaction (PCR). A 420-bp fragment of the hrpB7 gene was amplified by PCR from 75 strains representing the four species. The PCR products were sequenced and phylogenetic analysis revealed that hrpB7 is highly conserved within each species, with a single-nucleotide polymorphism (SNP) among the X. vesicatoria strains. X. euvesicatoria and X. perforans varied by two SNP. Four probes and two primer sets were designed to target the four bacterial spot pathogens based on their hrpB7 gene sequences. In order to simultaneously detect the four bacterial spot pathogens, the four probes and two primer sets were optimized for a multiplex real-time TaqMan PCR assay. The optimized multiplex assay was determined to be highly specific to the four bacterial spot pathogens. Because the optimized multiplex assay facilitated the identification of each bacterial spot pathogen from pure cultures and infected plant tissue, it holds great potential as a diagnostic tool.


Phytopathology | 2016

Analysis of Sequenced Genomes of Xanthomonas perforans Identifies Candidate Targets for Resistance Breeding in Tomato

Sujan Timilsina; Peter Abrahamian; Neha Potnis; Gerald V. Minsavage; Frank F. White; Brian J. Staskawicz; Jeffrey B. Jones; Gary E. Vallad; Erica M. Goss

Bacterial disease management is a challenge for modern agriculture due to rapid changes in pathogen populations. Genome sequences for hosts and pathogens provide detailed information that facilitates effector-based breeding strategies. Tomato genotypes have gene-for-gene resistance to the bacterial spot pathogen Xanthomonas perforans. The bacterial spot populations in Florida shifted from tomato race 3 to 4, such that the corresponding tomato resistance gene no longer recognizes the effector protein AvrXv3. Genome sequencing showed variation in effector profiles among race 4 strains collected in 2006 and 2012 and compared with a race 3 strain collected in 1991. We examined variation in putative targets of resistance among Florida strains of X. perforans collected from 1991 to 2006. Consistent with race change, avrXv3 was present in race 3 strains but nonfunctional in race 4 strains due to multiple independent mutations. Effectors xopJ4 and avrBs2 were unchanged in all strains. The effector avrBsT was absent in race 3 strains collected in the 1990s but present in race 3 strains collected in 2006 and nearly all race 4 strains. These changes in effector profiles suggest that xopJ4 and avrBsT are currently the best targets for resistance breeding against bacterial spot in tomato.


Plant Disease | 2015

Multilocus Sequence Analysis Reveals Genetic Diversity in Xanthomonads Associated With Poinsettia Production

W. Rockey; Neha Potnis; Sujan Timilsina; Jason C. Hong; Gary E. Vallad; Jeffrey B. Jones; David J. Norman

Xanthomonas axonopodis pv. poinsettiicola is traditionally identified as the primary causal agent of bacterial leaf spot on poinsettia (family Euphorbiaceae). Sixty-seven strains of xanthomonads isolated from lesions associated with several species within the family Euphorbiaceae were collected over a 64-year period. The pathogenicity of these strains was compared on several potential hosts and they were analyzed by multilocus sequence analysis (MLSA) using six housekeeping genes. The 67 Xanthomonas strains associated with poinsettia production were separated into three distinct clades based on MLSA. The first clade identified contained the X. axonopodis pv. poinsettiicola reference strain (LMG849PT). A second clade was more closely related to X. hortorum pv. pelargonii (LMG7314PT) and the third clade contained the X. codiaei type strain (LMG8678T). This analysis indicated that there may also be other closely related pathovars or species of Xanthomonas that can infect poinsettia. Strains from the three clades could not be distinguished by symptoms or virulence on poinsettia plants. Strains capable of infecting geranium were found in all three clades, although the extent of leaf spot formation and number of systemic infections were significantly less than those produced by X. hortorum pv. pelargonii strains, typically the main causal agent of bacterial leaf spot on geranium. Clade III also contained strains isolated from zebra plant (Aphelandra squarrosa, family Acanthaceae), which is a newly recognized host for X. codiaei and X. axonopodis pv. poinsettiicola. Xanthomonas leaf spot is a serious threat to poinsettia production that can be caused by several Xanthomonas spp. that can infect different ornamental plant hosts. It is imperative that growers maintain a strict sanitation program because reservoirs of inoculum can occur on a number of ornamental hosts.


Phytopathology | 2017

A Novel Phylogroup of Pseudomonas cichorii Identified Following an Unusual Disease Outbreak on Tomato

Sujan Timilsina; Heather Adkison; Anna L. Testen; E. A. Newberry; Sally A. Miller; Matthews L. Paret; Gerald V. Minsavage; Erica M. Goss; Jeffrey B. Jones; Gary E. Vallad

Recently, in Central Florida tomato production fields, tomato foliage and fruit were observed with symptoms similar to bacterial speck. Fluorescent pseudomonads were consistently isolated and the strains were characterized by standard LOPAT tests, pathogenicity tests, and genetic characterization using 16S ribosomal RNA (rRNA) sequences and multilocus sequence analysis (MLSA) of conserved housekeeping genes. LOPAT test results indicated that the strains were likely Pseudomonas cichorii. These strains were pathogenic on tomato and were also pathogenic on lettuce, the host for the type strain of P. cichorii. Likewise, strains of P. cichorii isolated in Florida since the early 1980s from hosts other than tomato, along with the type strain, were also pathogenic on tomato. Genetic characterization using 16S rRNA and MLSA confirmed that the strains were most closely related to P. cichorii but varied significantly from the type strain. The Florida P. cichorii strains formed a separate phylogenetic group along with P. cichorii strains isolated from tomato in Tanzania. These strains were different from the previously described morphotypes and genomovars of P. cichorii. Our results indicate the presence of a genetically distinct group of multihost pathogenic P. cichorii strains that have been present in Florida since at least the early 1980s.

Collaboration


Dive into the Sujan Timilsina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeri D. Barak

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge