Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sujata Choudhury is active.

Publication


Featured researches published by Sujata Choudhury.


Anti-cancer Agents in Medicinal Chemistry | 2008

Targeting base excision repair for chemosensitization.

Sanjay Adhikari; Sujata Choudhury; Partha S. Mitra; Jerita J. Dubash; Shyama P. Sajankila; Rabindra Roy

In both bacteria and eukaryotes the alkylated, oxidized, and deaminated bases and depurinated lesions are primarily repaired via an endogenous preventive pathway, i.e. base excision repair (BER). Radiation therapy and chemotherapy are two important modes of cancer treatment. Many of those therapeutic agents used in the clinic have the ability to induce the DNA damage; however, they may also be highly cytotoxic, causing peripheral toxicity and secondary cancer as adverse side effects. In addition, the damage produced by the therapeutic agents can often be repaired by the BER proteins, which in effect confers therapeutic resistance. Efficient inhibition of a particular BER protein(s) may increase the efficacy of current chemotherapeutic regimes, which minimizes resistance and ultimately decreases the possibility of the aforementioned negative side effects. Therefore, pharmacological inhibition of DNA damage repair pathways may be explored as a useful strategy to enhance chemosensitivity. Various agents have shown excellent results in preclinical studies in combination chemotherapy. Early phase clinical trials are now being carried out using DNA repair inhibitors targeting enzymes such as PARP, DNA-PK or MGMT. In the case of BER proteins, elimination of N-Methylpurine DNA glycosylase (MPG) or inhibition of AP-endonuclease (APE) increased sensitivity of cancer cells to alkylating chemotherapeutics. MPG(-/-) embryonic stem cells and cells having MPG knock-down by siRNA are hypersensitive to alkylating agents, whereas inhibition of APE by small molecule inhibitors sensitized cancer cells to alkylating chemotherapeutics. Thus, MPG and other BER proteins could be potential targets for chemosensitization.


Mutation Research | 2013

Repair kinetics of acrolein- and (E)-4-hydroxy-2-nonenal-derived DNA adducts in human colon cell extracts.

Sujata Choudhury; Marcin Dyba; Jishen Pan; Rabindra Roy; Fung-Lung Chung

ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) play a role in the pathogenesis of colon cancer. Upon oxidation, PUFAs generate α,β-unsaturated aldehydes or enals, such as acrolein (Acr) and (E)-4-hydroxy-2-nonenal (HNE), which can form cyclic adducts of deoxyguanosine (Acr-dG and HNE-dG, respectively) in DNA. Both Acr-dG and HNE-dG adducts have been detected in human and animal tissues and are potentially mutagenic and carcinogenic. In vivo levels of Acr-dG in DNA are at least two orders of magnitude higher than those of HNE-dG. In addition to the facile reaction with Acr, the higher levels of Acr-dG than HNE-dG in vivo may be due to a lower rate of repair. Previous studies have shown that HNE-dG adducts are repaired by the NER pathway (Choudhury et al. [42]). We hypothesize that Acr-dG adducts are repaired at a slower rate than HNE-dG and that HNE-dG in DNA may influence the repair of Acr-dG. In this study, using a DNA repair synthesis assay and a LC-MS/MS method, we showed that Acr-dG in a plasmid DNA is repaired by NER proteins, but it is repaired at a much slower rate than HNE-dG in human colon cell extracts, and the slow repair of Acr-dG is likely due to poor recognition/excision of the lesions in DNA. Furthermore, using a plasmid DNA containing both adducts we found the repair of Acr-dG is significantly inhibited by HNE-dG, however, the repair of HNE-dG is not much affected by Acr-dG. This study demonstrates that the NER repair efficiencies of the two major structurally-related in vivo cyclic DNA adducts from lipid oxidation vary greatly. More importantly, the repair of Acr-dG can be significantly retarded by the presence of HNE-dG in DNA. Therefore, this study provides a mechanistic explanation for the higher levels of Acr-dG than HNE-dG observed in tissue DNA.


Cell Cycle | 2013

Dissecting the pathways that destabilize mutant p53: The proteasome or autophagy?

Sujata Choudhury; Vamsi K. Kolukula; Anju Preet; Chris Albanese; Maria Laura Avantaggiati

One fundamental feature of mutant forms of p53 consists in their accumulation at high levels in tumors. At least in the case of neomorphic p53 mutations, which acquire oncogenic activity, stabilization is a driving force for tumor progression. It is well documented that p53 mutants are resistant to proteasome-dependent degradation compared with wild-type p53, but the exact identity of the pathways that affect mutant p53 stability is still debated. We have recently shown that macroautophagy (autophagy) provides a route for p53 mutant degradation during restriction of glucose. Here we further show that in basal conditions of growth, inhibition of autophagy with chemical inhibitors or by downregulation of the essential autophagic genes ATG1/Ulk1, Beclin-1 or ATG5, results in p53 mutant stabilization. Conversely, overexpression of Beclin-1 or ATG1/Ulk1 leads to p53 mutant depletion. Furthermore, we found that in many cell lines, prolonged inhibition of the proteasome does not stabilize mutant p53 but leads to its autophagic-mediated degradation. Therefore, we conclude that autophagy is a key mechanism for regulating the stability of several p53 mutants. We discuss plausible mechanisms involved in this newly identified degradation pathway as well as the possible role played by autophagy during tumor evolution driven by mutant p53.


Nature Protocols | 2017

Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens

Xuefeng Liu; Ewa Krawczyk; Frank A. Suprynowicz; Nancy Palechor-Ceron; Hang Yuan; Aleksandra Dakic; Vera Simic; Yun-Ling Zheng; Praathibha Sripadhan; Chen Chen; Jie Lu; Tung-Wei Hou; Sujata Choudhury; Bhaskar Kallakury; Dean G Tang; Thomas N. Darling; Rajesh L. Thangapazham; Olga Timofeeva; Anatoly Dritschilo; Scott H. Randell; Christopher Albanese; Seema Agarwal; Richard Schlegel

Historically, it has been difficult to propagate cells in vitro that are derived directly from human tumors or healthy tissue. However, in vitro preclinical models are essential tools for both the study of basic cancer biology and the promotion of translational research, including drug discovery and drug target identification. This protocol describes conditional reprogramming (CR), which involves coculture of irradiated mouse fibroblast feeder cells with normal and tumor human epithelial cells in the presence of a Rho kinase inhibitor (Y-27632). CR cells can be used for various applications, including regenerative medicine, drug sensitivity testing, gene expression profiling and xenograft studies. The method requires a pathologist to differentiate healthy tissue from tumor tissue, and basic tissue culture skills. The protocol can be used with cells derived from both fresh and cryopreserved tissue samples. As approximately 1 million cells can be generated in 7 d, the technique is directly applicable to diagnostic and predictive medicine. Moreover, the epithelial cells can be propagated indefinitely in vitro, yet retain the capacity to become fully differentiated when placed into conditions that mimic their natural environment.


Journal of Biological Chemistry | 2003

In vitro and in vivo dimerization of human endonuclease III stimulates its activity

Xiang Liu; Sujata Choudhury; Rabindra Roy

Human endonuclease III (hNTH1), a DNA glycosylase with associated abasic lyase activity, repairs various mutagenic and toxic-oxidized DNA lesions, including thymine glycol. We demonstrate for the first time that the full-length hNTH1 positively cooperates in product formation as a function of enzyme concentration. The protein concentrations that caused cooperativity in turnover also exhibited dimerization, independent of DNA binding. Earlier we had found that the hNTH1 consists of two domains: a well conserved catalytic domain, and an inhibitory N-terminal tail. The N-terminal truncated proteins neither undergo dimerization, nor do they show cooperativity in turnover, indicating that the homodimerization of hNTH1 is specific and requires the N-terminal tail. Further kinetic analysis at transition states reveals that this homodimerization stimulates an 11-fold increase in the rate of release of the final product, an AP-site with a 3′-nick, and that it does not affect other intermediate reaction rates, including those of DNA N-glycosylase or AP lyase activities that are modulated by previously reported interacting proteins, YB-1, APE1, and XPG. Thus, the site of modulating action of the dimer on the hNTH1 reaction steps is unique. Moreover, the high intranuclear (2.3 μm) and cytosolic (0.65 μm) concentrations of hNTH1 determined here support the possibility of in vivo dimerization; indeed, in vivo protein cross-linking showed the presence of the dimer in the nucleus of HeLa cells. Therefore, it is likely that the dimerization of hNTH1 involving the N-terminal tail masks the inhibitory effect of this tail and plays a critical role in its catalytic turnover in the cell.


The EMBO Journal | 2017

A new sub‐pathway of long‐patch base excision repair involving 5′ gap formation

Jordan Woodrick; Suhani Gupta; Sharon Camacho; Swetha Parvathaneni; Sujata Choudhury; Amrita K. Cheema; Yi Bai; Pooja Khatkar; Hayriye V. Erkizan; Furqan Sami; Yan Su; Orlando D. Schärer; Sudha Sharma; Rabindra Roy

Base excision repair (BER) is one of the most frequently used cellular DNA repair mechanisms and modulates many human pathophysiological conditions related to DNA damage. Through live cell and in vitro reconstitution experiments, we have discovered a major sub‐pathway of conventional long‐patch BER that involves formation of a 9‐nucleotide gap 5′ to the lesion. This new sub‐pathway is mediated by RECQ1 DNA helicase and ERCC1‐XPF endonuclease in cooperation with PARP1 poly(ADP‐ribose) polymerase and RPA. The novel gap formation step is employed during repair of a variety of DNA lesions, including oxidative and alkylation damage. Moreover, RECQ1 regulates PARP1 auto‐(ADP‐ribosyl)ation and the choice between long‐patch and single‐nucleotide BER, thereby modulating cellular sensitivity to DNA damage. Based on these results, we propose a revised model of long‐patch BER and a new key regulation point for pathway choice in BER.


Oncotarget | 2016

ROCK inhibitor reduces Myc-induced apoptosis and mediates immortalization of human keratinocytes.

Aleksandra Dakic; Kyle A. DiVito; Shuang Fang; Frank A. Suprynowicz; Anirudh Gaur; Xin Li; Nancy Palechor-Ceron; Vera Simic; Sujata Choudhury; Songtao Yu; Cynthia M. Simbulan-Rosenthal; Dean S. Rosenthal; Richard Schlegel; Xuefeng Liu

The Myc/Max/Mad network plays a critical role in cell proliferation, differentiation and apoptosis and c-Myc is overexpressed in many cancers, including HPV-positive cervical cancer cell lines. Despite the tolerance of cervical cancer keratinocytes to high Myc expression, we found that the solitary transduction of the Myc gene into primary cervical and foreskin keratinocytes induced rapid cell death. These findings suggested that the anti-apoptotic activity of E7 in cervical cancer cells might be responsible for negating the apoptotic activity of over-expressed Myc. Indeed, our earlier in vitro studies demonstrated that Myc and E7 synergize in the immortalization of keratinocytes. Since we previously postulated that E7 and the ROCK inhibitor, Y-27632, were members of the same functional pathway in cell immortalization, we tested whether Y-27632 would inhibit apoptosis induced by the over-expression of Myc. Our findings indicate that Y-27632 rapidly inhibited Myc-induced membrane blebbing and cellular apoptosis and, more generally, functioned as an inhibitor of extrinsic and intrinsic pathways of cell death. Most important, Y-27632 cooperated with Myc to immortalize keratinocytes efficiently, indicating that apoptosis is a major barrier to Myc-induced immortalization of keratinocytes. The anti-apoptotic activity of Y-27632 correlated with a reduction in p53 serine 15 phosphorylation and the consequent reduction in the expression of downstream target genes p21 and DAPK1, two genes involved in the induction of cell death.


Oncotarget | 2017

Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer

Olga Timofeeva; Nancy Palechor-Ceron; Guanglei Li; Hang Yuan; Ewa Krawczyk; Xiaogang Zhong; Geng Liu; Geeta Upadhyay; Aleksandra Dakic; Songtao Yu; Shuang Fang; Sujata Choudhury; Xueping Zhang; Andrew Ju; Myeong-Seon Lee; Han C. Dan; Youngmi Ji; Yong Hou; Yun-Ling Zheng; Chris Albanese; Johng S. Rhim; Richard Schlegel; Anatoly Dritschilo; Xuefeng Liu

Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-29 and GUMC-30 respectively, from a patients prostatectomy specimen. These CR cells proliferate indefinitely in vitro and retain stable karyotypes. Most importantly, only tumor-derived CR cells (GUMC-30) produced tumors in xenografted SCID mice, demonstrating maintenance of the critical tumor phenotype. Characterization of cells with DNA fingerprinting demonstrated identical patterns in normal and tumor CR cells as well as in xenografted tumors. By flow cytometry, both normal and tumor CR cells expressed basal, luminal, and stem cell markers, with the majority of the normal and tumor CR cells expressing prostate basal cell markers, CD44 and Trop2, as well as luminal marker, CD13, suggesting a transit-amplifying phenotype. Consistent with this phenotype, real time RT-PCR analyses demonstrated that CR cells predominantly expressed high levels of basal cell markers (KRT5, KRT14 and p63), and low levels of luminal markers. When the CR tumor cells were injected into SCID mice, the expression of luminal markers (AR, NKX3.1) increased significantly, while basal cell markers dramatically decreased. These data suggest that CR cells maintain high levels of proliferation and low levels of differentiation in the presence of feeder cells and ROCK inhibitor, but undergo differentiation once injected into SCID mice. Genomic analyses, including SNP and INDEL, identified genes mutated in tumor cells, including components of apoptosis, cell attachment, and hypoxia pathways. The use of matched patient-derived cells provides a unique in vitro model for studies of early prostate cancer.


PLOS ONE | 2017

Conditional cell reprogramming involves non-canonical β-catenin activation and mTOR-mediated inactivation of Akt

Frank A. Suprynowicz; Christopher M. Kamonjoh; Ewa Krawczyk; Seema Agarwal; Anton Wellstein; Fadeke A. Agboke; Sujata Choudhury; Xuefeng Liu; Richard Schlegel

The combination of irradiated fibroblast feeder cells and Rho kinase inhibitor, Y-267362, converts primary epithelial cells growing in vitro into an undifferentiated adult stem cell-like state that is characterized by long-term proliferation. This cell culture method also maintains the proliferation of adult epithelial stem cells from various tissues. Both primary and adult stem cells retain their tissue-specific differentiation potential upon removal of the culture conditions. Due to the ability to modulate the proliferation and differentiation of the cells, this method is referred to as conditional reprogramming and it is increasingly being used in studies of tumor heterogeneity, personalized medicine and regenerative medicine. However, little is known about the biology of these conditionally reprogrammed (CR) cells. Previously we showed that β-catenin activation, a hallmark of stem cells in vivo, occurs in CR human ectocervical cells (HECs). Here we show that β-catenin-dependent transcription is necessary for the induction of epithelial stem cell markers, and that β-catenin is activated via a non-canonical pathway that is independent of Wnt and Akt/GSK-3. Active Akt actually decreases due to increased mTOR signaling, with a consequent increase in dephosphorylated, active GSK-3. Despite the increase in active GSK-3, β-catenin associates with protein phosphatase 2A (PP2A) and is activated. Inhibition of PP2A catalytic activity reduces both the level of active β-catenin and the acute induction of stem cell markers, suggesting an important role for PP2A in the activation of β-catenin. Moreover, we demonstrate similar results using human prostate and breast cells, indicating that these changes are not restricted to ectocervical epithelial cells and may represent a more fundamental property of conditional reprogramming.


Mutation Research | 2015

A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

Jordan Woodrick; Suhani Gupta; Pooja Khatkar; Kalpana Dave; Darya Levashova; Sujata Choudhury; Hadi Elias; Tapas Saha; Susette C. Mueller; Rabindra Roy

DNA-protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA-protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination.

Collaboration


Dive into the Sujata Choudhury's collaboration.

Top Co-Authors

Avatar

Rabindra Roy

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Chen

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hang Yuan

Georgetown University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge