Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sujata M. Bhavnani is active.

Publication


Featured researches published by Sujata M. Bhavnani.


Clinical Infectious Diseases | 2007

Pharmacokinetics-Pharmacodynamics of Antimicrobial Therapy: It's Not Just for Mice Anymore

Paul G. Ambrose; Sujata M. Bhavnani; Christopher M. Rubino; Arnold Louie; Tawanda Gumbo; Alan Forrest; George L. Drusano

Since the advent of the modern era of antimicrobial chemotherapy in the 1930s, animal infection models have allowed for the in vivo evaluation of antimicrobial agents for the treatment of experimentally induced infection. Today, animal pharmacokinetic-pharmacodynamic (PK-PD) infection models serve as a cornerstone of the preclinical assessment process for antibacterial agents and dose and dosing interval selection, as decision support for setting in vitro susceptibility breakpoints, and, finally, for the evaluation of the meaning of in vitro resistance. Over the past 15 years, considerable PK-PD data have been derived from infected patients for many classes of antimicrobial agents. These data provide the opportunity to confirm knowledge gained from animal PK-PD infection models.


Clinical Infectious Diseases | 2007

Back to the Future: Using Aminoglycosides Again and How to Dose Them Optimally

George M. Eliopoulos; George L. Drusano; Paul G. Ambrose; Sujata M. Bhavnani; Joseph S. Bertino; Ann N. Nafziger; Arnold Louie

Gram-negative organisms have become increasingly resistant to both beta-lactam antibiotics and fluoroquinolones. Consequently, aminoglycoside antibiotics have undergone a resurgence in use. Because of the known toxicities of aminoglycoside antibiotics, clinicians have avoided their use, unless no other alternatives were extant. Over the past 2 decades, we have learned much about the relationship between aminoglycoside exposure and the likelihood of a good clinical outcome or the occurrence of nephrotoxicity. For example, minimum inhibitory concentration values > or = 2.0 mg/L lead to unacceptably low probabilities of a good clinical outcome, and infrequent administration of doses (i.e., intervals of 24 h and longer intervals for patients with compromised renal function) plays a central role in minimizing the likelihood of toxicity. Using these new insights, we suggest ways of evaluating the dose and schedule of administration of aminoglycosides in empirical therapy to obtain the highest likelihood of an efficacious and nontoxic therapy.


Antimicrobial Agents and Chemotherapy | 2008

Association of Fluconazole Pharmacodynamics with Mortality in Patients with Candidemia

John W. Baddley; Mukesh Patel; Sujata M. Bhavnani; Stephen A. Moser; David R. Andes

ABSTRACT Recent studies of nonneutropenic patients with candidemia or candidiasis suggest that fluconazole pharmacodynamic parameters correlate with clinical outcomes; however, additional data of correlation to mortality in patients with candidemia would be valuable. We assessed the impact of MICs for Candida, fluconazole pharmacodynamics, and patient characteristics on all-cause mortality with use of a prospective cohort of 96 hospitalized patients with candidemia. Among 84 patients for whom Candida isolates were available for testing, the most frequent Candida species isolated were Candida albicans (44%), followed by Candida parapsilosis (20.2%), and Candida glabrata (20.2%). Fluconazole resistance (MIC of ≥64 μg/ml) was present in 7 (8.3%) to 10 (11.9%) of 84 isolates, depending on the MIC endpoint determination method (50% or 80% inhibition read at 24 or 48 h). Overall mortality occurred in 27 (28.1%) of 96 patients, and nonsurvivors were more likely to have fluconazole-resistant isolates (25% versus 6.7%; P = 0.02). Multivariable analysis demonstrated an association between fluconazole resistance and mortality, but it did not reach statistical significance (odds ratio, 5.3; 95% confidence interval, 0.8 to 33.4; P = 0.08). By pharmacodynamic analysis, a fluconazole area under the concentration-time curve/MIC of <11.5 or MIC of ≥64 was associated with increased patient mortality (P ≤ 0.09). These data support previous findings of an antifungal exposure-response relationship to mortality in patients with candidemia. In addition, similar MICs were obtained using a 24- or 48-h MIC endpoint determination, thus providing the opportunity to assess earlier the impact of isolate susceptibility on therapy.


Antimicrobial Agents and Chemotherapy | 2005

Use of Pharmacokinetic-Pharmacodynamic Target Attainment Analyses To Support Phase 2 and 3 Dosing Strategies for Doripenem

Sujata M. Bhavnani; Jeffrey P. Hammel; Brenda Cirincione; Matthew A. Wikler; Paul G. Ambrose

ABSTRACT A doripenem population pharmacokinetic model and Monte Carlo simulations were utilized for dose regimen decision support for future clinical development. Simulation results predict that 500 mg of doripenem administered over 1 h every 8 h would be effective against bacterial strains with MICs less than 2 μg/ml and that less susceptible strains could be treated with prolonged infusions.


Antimicrobial Agents and Chemotherapy | 2007

Isoniazid Bactericidal Activity and Resistance Emergence: Integrating Pharmacodynamics and Pharmacogenomics To Predict Efficacy in Different Ethnic Populations

Tawanda Gumbo; Arnold Louie; Weiguo Liu; David W. Brown; Paul G. Ambrose; Sujata M. Bhavnani; George L. Drusano

ABSTRACT Isoniazid, administered as part of combination antituberculosis therapy, is responsible for most of the early bactericidal activity (EBA) of the regimen. However, the emergence of Mycobacterium tuberculosis resistance to isoniazid is a major problem. We examined the relationship between isoniazid exposure and M. tuberculosis microbial kill, as well as the emergence of resistance, in our in vitro pharmacodynamic model of tuberculosis. Since single-nucleotide polymorphisms of the N-acetyltransferase-2 gene lead to two different clearances of isoniazid from serum in patients, we simulated the isoniazid concentration-time profiles encountered in both slow and fast acetylators. Both microbial kill and the emergence of resistance during monotherapy were associated with the ratio of the area under the isoniazid concentration-time curve from 0 to 24 h (AUC0-24) to the isoniazid MIC. The time in mutant selection window hypothesis was rejected. Next, we utilized the in vitro relationship between the isoniazid AUC0-24/MIC ratio and microbial kill, the distributions of isoniazid clearance in populations with different percentages of slow and fast acetylators, and the distribution of isoniazid MICs for isonazid-susceptible M. tuberculosis clinical isolates in Monte Carlo simulations to calculate the EBA expected for ∼10,000 patients treated with 300 mg of isoniazid. For those patient populations in which the proportion of fast acetylators and the isoniazid MICs were high, the average EBA of the standard dose was ∼0.3 log10 CFU/ml/day and was thus suboptimal. Our approach, which utilizes preclinical pharmacodynamics and the genetically determined multimodal distributions of serum clearances, is a preclinical tool that may be able to predict the EBAs of various doses of new antituberculosis drugs.


Clinical Infectious Diseases | 2013

Background and Rationale for Revised Clinical and Laboratory Standards Institute Interpretive Criteria (Breakpoints) for Enterobacteriaceae and Pseudomonas aeruginosa: I. Cephalosporins and Aztreonam

L. Barth Reller; Melvin P. Weinstein; Michael N. Dudley; Paul G. Ambrose; Sujata M. Bhavnani; William A. Craig; Mary Jane Ferraro; Ronald N. Jones

Widespread resistance in Enterobacteriaceae and Pseudomonas aeruginosa to cephalosporin and monobactam antibiotics due to extended-spectrum β-lactamases (ESBLs) has resulted in the need for reassessment of the interpretative criteria (breakpoints) established for these agents more than 2 decades ago. Following extensive evaluation, the Clinical and Laboratory Standards Institute recently adopted and published new breakpoints for these agents for use in clinical laboratories and provided updated recommendations for use of the ESBL screening test. This paper summarizes the background and supportive rationale for new interpretative criteria for cephalosporins and aztreonam for testing Enterobacteriaceae.


Antimicrobial Agents and Chemotherapy | 2003

Pharmacokinetics-Pharmacodynamics of Cefepime and Piperacillin- Tazobactam against Escherichia coli and Klebsiella pneumoniae Strains Producing Extended-Spectrum β-Lactamases: Report from the ARREST Program

Paul G. Ambrose; Sujata M. Bhavnani; Ronald N. Jones

ABSTRACT The frequency of resistance to β-lactams among nosocomial isolates has been increasing due to extended-spectrum β-lactamase (ESBL)-producing enteric bacilli. Although clinical outcome data are desirable, assessment of clinical efficacy has been limited due to the lack of a statistically meaningful number of well-documented cases. Since time above the MIC (T>MIC) is the pharmacokinetic-pharmacodynamic (PK-PD) measure that best correlates with in vivo activity of β-lactams, a stochastic model was used to predict the probability of PK-PD target attainment ranging from 30 (P30) to 70% (P70) T>MIC, for standard dosing regimens of both piperacillin-tazobactam and cefepime against Escherichia coli and Klebsiella pneumoniae ESBL phenotypes. The P70/30 T>MIC for cefepime at 2 g every 12 h against E. coli and K. pneumoniae was 0.99/1.0 and 0.96/1.0 and for a regimen of 1 g every 12 h was 0.96/1.0 and 0.93/0.99, respectively. For piperacillin-tazobactam at 3.375 g every 4 h against E. coli and K. pneumoniae, the P70/30 T>MIC was 0.77/0.96 and 0.48/0.77 and for a regimen of 3.375 g every 6 h was 0.28/0.91 and 0.16/0.69, respectively. These data suggest that the probability of achieving T>MIC target attainment rates is generally higher with cefepime than with piperacillin-tazobactam for present-day ESBL-producing strains when one uses contemporary dosing regimens.


Clinical Infectious Diseases | 2010

Pharmacokinetic-Pharmacodynamic Considerations in the Design of Hospital-Acquired or Ventilator-Associated Bacterial Pneumonia Studies: Look before You Leap!

Paul G. Ambrose; Sujata M. Bhavnani; Evelyn J. Ellis-Grosse; George L. Drusano

Our thesis is a simple one: although a drug can fail in an individual patient for many reasons, appropriately sized and conducted drug-development programs often fail because of insensitive, uninformative end points, and/or poor a priori regimen decisions. The difficulty in successfully developing antimicrobial agents at present is often exacerbated by company decision-makers who are either uninformed or disregard the difference between empirical-based (ie, akin to playing pin-the-tail on the donkey) and quantitative model-based development plans. Frequently, the focus is on Gantt charts (project event schedules) and the on-time submission of a New Drug Application to a regulatory body, such as the US Food and Drug Administration. Such misplaced focus has led and will continue to lead to a number of problems, including program failure or, even worse, regulatory approval of an inappropriate dosing regimen with associated negative safety and efficacy sequelae. We believe that the goal of drug development is not a New Drug Application submitted on time but, rather, an approved, differentiated, safe, and effective new medicine. Here, we focus on the pharmacokinetic-pharmacodynamic data needed to guide dosing regimen decisions for patients with hospital-acquired bacterial pneumonia or ventilator-associated bacterial pneumonia. Early consideration of these data in development programs will reduce risk not only to sponsors but also, most importantly, to the patients enrolled in the clinical trials.


The Journal of Infectious Diseases | 2007

Isoniazid's Bactericidal Activity Ceases because of the Emergence of Resistance, Not Depletion of Mycobacterium tuberculosis in the Log Phase of Growth

Tawanda Gumbo; Arnold Louie; Weiguo Liu; Paul G. Ambrose; Sujata M. Bhavnani; David W. Brown; George L. Drusano

BACKGROUND It is believed that the cessation of isoniazids early bactericidal activity during the initial phase of antituberculosis therapy is due to the depletion of Mycobacterium tuberculosis in the exponential phase of growth. We examined the veracity of this cornerstone belief. METHODS We used an in vitro infection model in which M. tuberculosis was exposed to isoniazid concentration-time profiles encountered in human patients. Experiments were performed to examine the time-related changes in the total bacterial population, the isoniazid-susceptible subpopulation, and the isoniazid-resistant subpopulation. RESULTS The cessation of microbial kill occurred between days 3 and 4 of isoniazid therapy, as occurs in patients. There were multiple logs of organisms in the exponential phase of growth remaining at the time when bactericidal activity ceased. The isoniazid-susceptible subpopulation was replaced by an isoniazid-resistant subpopulation after 80 h of therapy. The size of the isoniazid-susceptible subpopulation continued to decrease after the total population had ceased to decrease, whereas the resistant subpopulation remained in the exponential phase of growth. Resistance was due to single point mutations in the catalase-peroxidase gene and to reserpine-inhibitable efflux pumps. CONCLUSIONS The age-old hypothesis that isoniazids microbial killing of M. tuberculosis during log-phase growth ceases because of the depletion of this bacillary population needs to be modified.


Antimicrobial Agents and Chemotherapy | 2011

Randomized Pharmacokinetic and Pharmacodynamic Comparison of Fluoroquinolones for Tuberculous Meningitis

Guy Thwaites; Sujata M. Bhavnani; Tran Thi Hong Chau; Jeffrey P. Hammel; M. Estée Török; Scott A. Van Wart; Pham Phuong Mai; Daniel K. Reynolds; Maxine Caws; Nguyen Thi Dung; Tran Tinh Hien; Robert Kulawy; Jeremy Farrar; Paul G. Ambrose

ABSTRACT Tuberculous meningitis (TBM) is the most lethal form of tuberculosis, and new treatments that improve outcomes are required. We randomly assigned adults with TBM to treatment with standard antituberculosis treatment alone or in combination with ciprofloxacin (750 mg/12 h), levofloxacin (500 mg/12 h), or gatifloxacin (400 mg/24 h) for the first 60 days of therapy. Fluoroquinolone concentrations were measured with plasma and cerebrospinal fluid (CSF) specimens taken at predetermined, randomly assigned times throughout treatment. We aimed to describe the pharmacokinetics of each fluoroquinolone during TBM treatment and evaluate the relationship between drug exposure and clinical response over 270 days of therapy (Controlled Trials number ISRCTN07062956). Sixty-one patients with TBM were randomly assigned to treatment with no fluoroquinolone (n = 15), ciprofloxacin (n = 16), levofloxacin (n = 15), or gatifloxacin (n = 15). Cerebrospinal fluid penetration, measured by the ratio of the plasma area under the concentration-time curve from 0 to 24 h (AUC0–24) to the cerebrospinal fluid AUC0–24, was greater for levofloxacin (median, 0.74; range, 0.58 to 1.03) than for gatifloxacin (median, 0.48; range, 0.47 to 0.50) or ciprofloxacin (median, 0.26; range, 0.11 to 0.77). Univariable and multivariable analyses of fluoroquinolone exposure against a range of different treatment responses revealed worse outcomes among patients with lower and higher plasma and CSF exposures than for patients with intermediate exposures (a U-shaped exposure-response). TBM patients most likely to benefit from fluoroquinolone therapy were identified, along with exposure-response relationships associated with improved outcomes. Fluoroquinolones add antituberculosis activity to the standard treatment regimen, but to improve outcomes of TBM, they must be started early, before the onset of coma.

Collaboration


Dive into the Sujata M. Bhavnani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Forrest

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott A. Van Wart

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Andes

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge