Sujatha Narayanan Kutty
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sujatha Narayanan Kutty.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Brian M. Wiegmann; Michelle D. Trautwein; Isaac S. Winkler; Norman B. Barr; Jung-wook Kim; Christine L. Lambkin; Matthew A. Bertone; Brian K. Cassel; Keith M. Bayless; Alysha M. Heimberg; Benjamin M. Wheeler; Kevin J. Peterson; Thomas Pape; Bradley J. Sinclair; Jeffrey H. Skevington; Vladimir Blagoderov; Jason Caravas; Sujatha Narayanan Kutty; Urs Schmidt-Ott; Gail E. Kampmeier; F. Christian Thompson; David A. Grimaldi; Andrew T. Beckenbach; Gregory W. Courtney; Markus Friedrich; Rudolf Meier; David K. Yeates
Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore, we use micro-RNAs to resolve a node with implications for the evolution of embryonic development in Diptera. We demonstrate that flies experienced three episodes of rapid radiation—lower Diptera (220 Ma), lower Brachycera (180 Ma), and Schizophora (65 Ma)—and a number of life history transitions to hematophagy, phytophagy, and parasitism in the history of fly evolution over 260 million y.
Systematic Entomology | 2010
Sujatha Narayanan Kutty; Thomas Pape; Brian M. Wiegmann; Rudolf Meier
The dipteran clade Calyptratae is comprised of approximately 18 000 described species (12% of the known dipteran diversity) and includes well‐known taxa such as houseflies, tsetse flies, blowflies and botflies, which have a close association with humans. However, the phylogenetic relationships within this insect radiation are very poorly understood and controversial. Here we propose a higher‐level phylogenetic hypothesis for the Calyptratae based on an extensive DNA sequence dataset for 11 noncalyptrate outgroups and 247 calyptrate species representing all commonly accepted families in the Oestroidea and Hippoboscoidea, as well as those of the muscoid grade. DNA sequences for genes in the mitochondrial (12S, 16S, cytochrome c oxidase subunit I and cytochrome b) and nuclear genome [18S, 28S, the carbamoyl phosphate synthetase region of CAD (rudimentary), Elongation factor one alpha] were used to reconstruct the relationships. We discuss problems relating to the alignment and analysis of large datasets and emphasize the advantages of utilizing a guide tree‐based approach for the alignment of the DNA sequences and using the leaf stability index to identify ‘wildcard’ taxa whose excessive instability obscures the phylogenetic signal. Our analyses support the monophyly of the Calyptratae and demonstrate that the superfamily Oestroidea is nested within the muscoid grade. We confirm that the monotypic family Mystacinobiidae is an oestroid and further revise the composition of the Oestroidea by demonstrating that the previously unplaced and still undescribed ‘McAlpine’s fly’ is nested within this superfamily as a probable sister group to Mystacinobiidae. Within the Oestroidea we confirm with molecular data that the Calliphoridae are a paraphyletic grade of lineages. The families Sarcophagidae and Rhiniidae are monophyletic, but support for the monophyly of Tachinidae and Rhinophoridae depends on analytical technique (e.g. parsimony or maximum likelihood). The superfamilies Hippoboscoidea and Oestroidea are consistently found to be monophyletic, and the paraphyly of the muscoid grade is confirmed. In the overall relationships for the calyptrates, the Hippoboscoidea are sister group to the remaining Calyptratae, and the Fanniidae are sister group to the nonhippoboscoid calyptrates, whose relationships can be summarized as (Muscidae (Oestroidea (Scathophagidae, Anthomyiidae))).
Molecular Phylogenetics and Evolution | 2008
Sujatha Narayanan Kutty; Thomas Pape; Adrian C. Pont; Brian M. Wiegmann; Rudolf Meier
Approximately 5% of the known species-level diversity of Diptera belongs to the Muscoidea with its approximately 7000 described species. Despite including some of the most abundant and well known flies, the phylogenetic relationships within this superfamily are poorly understood. Previous attempts at reconstructing the relationships based on morphology and relatively small molecular data sets were only moderately successful. Here, we use molecular data for 127 exemplar species of the Muscoidea, two species from the Hippoboscoidea, ten species representing the Oestroidea and seven outgroup species from four acalyptrate superfamilies. Four mitochondrial genes 12S, 16S, COI, and Cytb, and four nuclear genes 18S, 28S, Ef1a, and CAD are used to reconstruct the relationships within the Muscoidea. The length-variable genes were aligned using a guide tree that was based on the protein-encoding genes and the indel-free sections of the ribosomal genes. We found that, based on topological considerations, this guide tree was a significant improvement over the default guide trees generated by ClustalX. The data matrix was analyzed using maximum parsimony (MP) and maximum likelihood (ML) and yielded very similar tree topologies. The Calyptratae are monophyletic and the Hippoboscoidea are the sister group to the remaining calyptrates (MP). The Muscoidea are paraphyletic with a monophyletic Oestroidea nested within the Muscoidea as sister group to Anthomyiidae+Scathophagidae. The monophyly of three of the four recognized families in the Muscoidea is confirmed: the Fanniidae, Muscidae, and Scathophagidae. However, the Anthomyiidae are possibly paraphyletic. Within the Oestroidea, the Sarcophagidae and Tachinidae are sister groups and the Calliphoridae are paraphyletic.
Cladistics | 2008
Kathy Feng-Yi Su; Sujatha Narayanan Kutty; Rudolf Meier
The Sepsidae is, with approximately 300 described species, a relatively small family of cyclorrhaphan flies whose behaviour, morphology, and development have been extensively studied. However, currently the only available tree for Sepsidae is more than 10 years old and was based entirely on morphological characters. Here, we present the results of parsimony and Bayesian analyses based on 75 species, ten genes, and morphology. Parsimony and Bayesian analyses produce largely congruent and well‐supported topologies regardless of whether indels are coded as 5th character states, as missing values, or all sites with indels are removed. The tree confirms the monophyly of Sepsidae and identifies the Ropalomeridae as its sister group. With regard to higher‐level relationships, we identify widespread conflict between the morphological and the DNA sequence data. The proposed hypothesis based on both partitions largely reflects the signal in the molecular data. Particularly surprising is the rejection of two relationship hypotheses with strong morphological support, namely the sister group relationship between Orygma and the remaining Sepsidae and the monophyly of the Sepsis species group. Our partitioned Bremer support (PBS) analyses imply that indel coding has a stronger effect on the relative performance of individual gene partitions than the exclusion of alignment‐ambiguous sequences or the location of a gene on the mitochondrial or nuclear genome. However, these analyses also reveal unexpectedly strong fluctuations in PBS values given that indel treatment has only a minor effect on tree topology and jacknife support. These unexpected fluctuations highlight the need for a comparative study across multiple data sets that investigates the influence of conflict and indel treatment on PBS values.
Cladistics | 2007
Sujatha Narayanan Kutty; Marco Valerio Bernasconi; František Šifner; Rudolf Meier
The 60 000 described species of Cyclorrhapha are characterized by an unusual diversity in larval life‐history traits, which range from saprophagy over phytophagy to parasitism and predation. However, the direction of evolutionary change between the different modes remains unclear. Here, we use the Scathophagidae (Diptera) for reconstructing the direction of change in this relatively small family (≈ 250 spp.) whose larval habits mirror the diversity in natural history found in Cyclorrhapha. We subjected a molecular data set for 63 species (22 genera) and DNA sequences from seven genes (12S, 16S, Cytb, COI, 28S, Ef1‐alfa, Pol II) to an extensive sensitivity analysis and compare the performance of three different alignment strategies (manual, Clustal, POY). We find that the default Clustal alignment performs worst as judged by character incongruence, topological congruence and branch support. For this alignment, scoring indels as a fifth character state worsens character incongruence and topological congruence. However, manual alignment and direct optimization perform similarly well and yield near‐identical trees, although branch support is lower for the direct‐optimization trees. All three alignment techniques favor the upweighting of transversion. We furthermore confirm the independence of the concepts “node support” and “node stability” by documenting several cases of poorly supported nodes being very stable and cases of well supported nodes being unstable. We confirm the monophyly of the Scathophagidae, its two constituent subfamilies, and most genera. We demonstrate that phytophagy in the form of leaf mining is the ancestral larval feeding habit for Scathophagidae. From phytophagy, two shifts to saprophagy and one shift to predation has occurred while a second origin of predation is from a saprophagous ancestor.
Molecular Phylogenetics and Evolution | 2014
Sujatha Narayanan Kutty; Adrian C. Pont; Rudolf Meier; Thomas Pape
With about 5000 species in ca. 180 genera, the Muscidae is the most species-rich family in the muscoid grade of Calyptratae (Diptera: Cyclorrhapha), the others being the Fanniidae, Scathophagidae and Anthomyiidae. Muscidae is remarkable for its young age, high species diversity in all biogeographic regions, and an unusually diverse range of feeding habits at the larval stage (e.g., saprophagy, phytophagy, carnivory, endoparasitism, haematophagy). We here review muscid classification and biology and present a molecular phylogeny based on four mitochondrial genes (12S, 16S, COI, CYTB) and three nuclear genes (28S, Ef1a, and CAD) for 84 species from 40 genera. Our analysis is the first to include species from all biogeographic regions and all currently recognised muscid subfamilies and tribes. We provide strong support for the monophyly of the Muscidae, and for the first time also for the first split within this family. The ancestral larval feeding habit is reconstructed to be saprophagy with more specialised coprophagous saprophagy, phytophagy, and carnivory evolving multiple times from saprophagous ancestors. The origins of carnivory in larvae are significantly correlated with a reduction of the number of larval instars from three (ancestral) to two and one. The genus Achanthiptera which was previously in its own subfamily is shown to be closely related to Azeliini. However, it appears that Azeliinae is paraphyletic because Muscinae is sister-group to the Azeliini while the azeliine Reinwardtiini are polyphyletic. Coenosiinae and Muscinae are monophyletic, but Muscini is paraphyletic with regard to Stomoxyini. Because many subfamilies are apparently para- or even polyphyletic, we review the history of muscid classification in order to reveal how the currently used classification originated.
Molecular Phylogenetics and Evolution | 2008
Tan Siew Hoong Denise; Farhan Ali; Sujatha Narayanan Kutty; Rudolf Meier
Roos et al. (2008) recently reconstructed the evolutionary history of the Trachypithecus cristatus group and identified five populations that were ranked as species. The authors concluded that ‘‘further studies, including autosomal and Y chromosomal loci, are necessary to fully understand the evolutionary history of the silvered langur species group”. These data will be particularly important for the T. cristatus group given that males and females have very different dispersal patterns (Rosenblum et al., 1997). Here we would like to briefly alert to a little known case of hybridization between two species, discuss evidence from five nuclear loci, and investigate how many species would be supported under different species concepts (Laamanen et al., 2003). We conclude by urging all authors to be explicit about which species concept was used when proposing new species.
Systematic Entomology | 2010
Gwynne Shimin Lim; Wei Song Hwang; Sujatha Narayanan Kutty; Rudolf Meier; Patrick Grootaert
Abstract. The Dolichopodidae is a species‐rich dipteran group with almost 7000 described species. The monophyly of the subfamilies and their relationships remain largely unknown because the polarities of key morphological characters are unclear and molecular data are available only for 9 of the 19 proposed subfamilies. Here we test whether molecular data from two nuclear (18S, 28S) and four mitochondrial (12S, 16S, Cytb, COI) genes can resolve the higher‐level relationships within the family. Our study is based on 76 Oriental species from 12 dolichopodid subfamilies and uses eight species of Empididae and Hybotidae as outgroups. Parsimony and likelihood analyses confirm the monophyly of the Dolichopodidae, as well as the monophyly of five of the ten subfamilies represented by more than two species [Sympycninae, Sciapodinae, Dolichopodinae, Hydrophorinae (excluding tribe Aphrosylini), Neurigoninae]. There is strong support for restoring the tribe Aphrosylini as a separate subfamily Aphrosylinae. The monophyly of Medeterinae, Peloropeodinae and Diaphorinae is dependent on which tree reconstruction technique is used, how indels are coded, and whether the fast‐evolving sites are excluded. Overall, we find that our sample of Oriental species is largely compatible with the subfamily concepts that were developed for the northern temperate fauna. However, our data provide little support for relationships between the subfamilies. Branch lengths, saturation, and distance plots suggest that this is probably the result of the rapid origin of dolichopodid subfamilies over a relatively short time. We find that genera that are difficult to place into subfamilies based on morphological characters are generally also difficult to place using molecular data. We predict that a dense, balanced taxon sample and protein‐encoding nuclear genes will be needed to resolve the higher‐level relationships in the Dolichopodidae.
Cladistics | 2013
Andrea Tóthová; Rudolf Rozkošný; Lloyd Knutson; Sujatha Narayanan Kutty; Brian M. Wiegmann; Rudolf Meier
Sciomyzidae is a family of acalyptrate flies with 546 species in 61 genera that is among the most extensively studied groups of higher Diptera. Most of the known larvae are obligate enemies of Gastropoda. Hundreds of studies published over the past 50 years have resulted in detailed information concerning morphology of adults and immature stages, biology, development, behaviour, phenology and distribution. However, studies of phylogenetic relationships are based almost exclusively on morphological characters of adults, and no comprehensive molecular analysis across the family has been published. Here we fill this void by generating and analysing molecular data for 54 species of Sciomyzidae (22 genera), including Phaeomyiidae (one genus), and seven representative species of five other families of Sciomyzoidea (Coelopidae, Dryomyzidae, Helcomyzidae, Heteromyzidae and Huttoninidae) as outgroups. The reconstruction is based on morphological characters as well as nucleotide sequences for genes from the mitochondrial (12S, 16S, COI, COII, Cytb) and nuclear genome (28S, EF1α). The results are compared with recent morphological analyses. Our analyses support the monophyly of Sciomyzidae + Phaeomyiidae, and place Phaeomyiinae as a unique lineage within Sciomyzidae. A modified classification comprising three subfamilies is proposed. The major subfamily, Sciomyzinae, consists of two monophyletic and well separated groups, the tribes Sciomyzini and Tetanocerini.
Systematic Entomology | 2018
Sujatha Narayanan Kutty; Wing Hing Wong; Karen Meusemann; Rudolf Meier; Peter S. Cranston
Culicomorpha is a particularly species‐rich clade within Diptera (true flies) that comprises c. 10% of the described diversity, including many medically important flies. Morphological studies – even when all life stages are included – yield relationships different from those derived from molecular data, notably with regard to the position of Chironomidae. Congruence amongst molecular studies has been weak due to limitations in gene‐ and family‐level taxon coverage. Here we use a whole‐transcriptome shotgun phylogenomic approach to clarify the relationships among all families of Culicomorpha. The dataset comprised 30 species (27 ingroup) and 364 888 amino acid residues for 1233 single‐copy protein‐encoding genes. Likelihood and parsimony analyses produce robust and highly congruent phylogenetic trees, with only one node in conflict. The superfamily Culicoidea is well supported and comprises Dixidae + [Corethrellidae + (Chaoboridae + Culicidae)]. As suggested previously, Chironomoidea is not monophyletic. The well supported Thaumaleidae + Simuliidae is sister group to Culicoidea, with the weakly supported Chironomidae + Ceratopogonidae probably being the sister group of all remaining Culicomorpha. We used random addition concatenation analysis (RADICAL) and four‐cluster likelihood mapping (FcLM) to assess the strengths of nodal support. The sister‐group relationship between Chironomidae + Ceratopogonidae is consistent with the FcLM results but support for this relationship emerges only when 1150 of the 1233 loci are analysed. We discuss briefly nodes that remain poorly supported even with thousands of genes and mention problems with vouchering in transcriptomic studies.