Sujin Seo
University of Illinois at Urbana–Champaign
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sujin Seo.
Small | 2016
Sujin Seo; Xiangfei Zhou; Gang Logan Liu
Plasmonic substrates have fixed sensitivity once the geometry of the structure is defined. In order to improve the sensitivity, significant research effort has been focused on designing new plasmonic structures, which involves high fabrication costs; however, a method is reported for improving sensitivity not by redesigning the structure but by simply assembling plasmonic nanoparticles (NPs) near the evanescent field of the underlying 3D plasmonic nanostructure. Here, a nanoscale Lycurgus cup array (nanoLCA) is employed as a base colorimetric plasmonic substrate and an assembly template. Compared to the nanoLCA, the NP assembled nanoLCA (NP-nanoLCA) exhibits much higher sensitivity for both bulk refractive index sensing and biotin-streptavidin binding detection. The limit of detection of the NP-nanoLCA is at least ten times smaller when detecting biotin-streptavidin conjugation. The numerical calculations confirm the importance of the additive plasmon coupling between the NPs and the nanoLCA for a denser and stronger electric field in the same 3D volumetric space. Tunable sensitivity is accomplished by controlling the number of NPs in each nanocup, or the number density of the hot spots. This simple yet scalable and cost-effective method of using additive heterogeneous plasmon coupling effects will benefit various chemical, medical, and environmental plasmon-based sensors.
Scientific Reports | 2015
Manas Ranjan Gartia; Sujin Seo; Junhwan Kim; Te Wei Chang; Gaurav Bahl; Meng Lu; Gang Logan Liu; J. Gary Eden
An injection-seeded, WGM resonator-based amplifier has been demonstrated. Synergy between the gain medium, WGM spectrum, and the Raman modes of the amplifier constituents is fundamental. The estimated optical gain is ~ 30 dB.
Analytical Chemistry | 2015
Sujin Seo; Lonna Edwards; Gang Logan Liu
A plasmonic nanoscale Lycurgus cup array (nanoLCA), via near-field interaction with chromophores in commercial colorimetric biochemical assays, can drastically enhance assay sensitivity by over 2 orders of magnitude. A 96-microwell plate modified by placing the plasmonic nanoLCA on the well-bottom was used with the commercial Bradford protein quantification assay. Plasmons on the nanoLCA serve as an energy donor to matched resonance chromophores, and the near-field plasmonic energy coupling effect results in an increase in absorbance value at the plasmonic resonance wavelength. Even with a 5.1-fold reduced sample volume, a limit of detection enhancement factor of 200 is accomplished using the nanoLCA compared to using the conventional Bradford assay without plasmon aid. The nanoLCA-microplate sensing platform is readily scalable to 384- or 1536-microwell plates, which further reduces the sensing volume and boosts detection throughput with the enhanced sensitivity.
Scientific Reports | 2018
Sujin Seo; Te Wei Chang; Gang Logan Liu
Unique colorimetric optical properties of nanomaterials can effectively influence the light absorption or emission of molecules. Here, we design plasmonic substrate for surface-enhanced Raman scattering (SERS) by inducing three-dimensional (3D) hot spots on the sensing surface. The 3D hot spots are formed by the self-assembly of plasmonic nanoparticles (NPs) on a 3D plasmonic nanocup array structure. This 3D hot spot formation on the periodic nanocup arrays achieves much higher SERS enhancement factor than the 2D NP arrays, which have been conventionally sought SERS substrates. We also utilize the colorimetric properties of the nanocup arrays for an additional degree of SERS enhancement. Colorimetry, achieved by tunable plasmon resonance wavelength by controlling dielectric property on the nanocup array surface, eases the modulation of the plasmonic resonance condition without modifying the nanostructure design. By continuously monitoring the shifts of the plasmon resonance condition and its effect on the light absorption and emission of the nearby molecules, we verify that larger SERS enhancement is achieved when the plasmon resonance wavelength is matched with the Raman excitation wavelength. The ease of plasmon resonance tuning of this nanocup array-nanoparticle hybrid structure allows versatile SERS enhancement for a variety of different Raman measurement conditions.
Biomedical Optics Express | 2017
Lisa Hackett; Sujin Seo; S. Kim; Lynford L. Goddard; Gang Logan Liu
Cell adhesion is a crucial biological and biomedical parameter defining cell differentiation, cell migration, cell survival, and state of disease. Because of its importance in cellular function, several tools have been developed in order to monitor cell adhesion in response to various biochemical and mechanical cues. However, there remains a need to monitor cell adhesion and cell-substrate separation with a method that allows real-time measurements on accessible equipment. In this article, we present a method to monitor cell-substrate separation at the single cell level using a plasmonic extraordinary optical transmission substrate, which has a high sensitivity to refractive index changes at the metal-dielectric interface. We show how refractive index changes can be detected using intensity peaks in color channel histograms from RGB images taken of the device surface with a brightfield microscope. This allows mapping of the nonuniform refractive index pattern of a single cell cultured on the plasmonic substrate and therefore high-throughput detection of cell-substrate adhesion with observations in real time.
Proceedings of SPIE | 2016
Sujin Seo; Gang Logan Liu
Colorimetric detection is cost-effective and user-friendly when used for sensing target analytes without a need of bulky and expensive equipment. The extraordinary transmission phenomena through plasmonic periodic nanocup arrays achieve colorimetric sensing by detecting color changes of transmitted light associated with the refractive index variation. The application of the nanocup arrays, however, is relatively restricted due to a limited sensitivity for monolayered target analyte detections on the surface. In order to improve the sensitivity bounded by the underlying nanostructures, hybrid nanoparticle (NP) – nanocup array substrates are developed for enhancing the sensitivity to the refractive index change. The three dimensionally assembled Au NPs in circle along the sidewall of each nanocup increases the density of hot spots by the heterogeneous plasmonic coupling between the NP and the edge of the nanocup; thus a small refractive index change at the hot spot becomes easily detected than bare nanocup arrays. In addition to the bulk refractive index sensing, an ultrasensitive spectroscopic detection of the antigen-antibody binding is achieved by this three-dimensional self-assembly of Au NPs on the Au nanocup arrays.
Advanced Optical Materials | 2013
Manas Ranjan Gartia; Austin Hsiao; Anusha Pokhriyal; Sujin Seo; Gulsim Kulsharova; Brian T. Cunningham; Tiziana C. Bond; Gang Logan Liu
Nanotechnology | 2014
Te Wei Chang; Manas Ranjan Gartia; Sujin Seo; Austin Hsiao; Gang Logan Liu
Nanoscale | 2014
Sujin Seo; Manas Ranjan Gartia; Gang Logan Liu
Journal of Physical Chemistry C | 2015
Sujin Seo; Abid Ameen; Gang Logan Liu