Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sujith Puthiyaveetil is active.

Publication


Featured researches published by Sujith Puthiyaveetil.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts.

Sujith Puthiyaveetil; T. Anthony Kavanagh; Peter Cain; James A. Sullivan; Christine A. Newell; John C. Gray; Colin Robinson; Mark van der Giezen; Matthew B. Rogers; John F. Allen

We describe a novel, typically prokaryotic, sensor kinase in chloroplasts of green plants. The gene for this chloroplast sensor kinase (CSK) is found in cyanobacteria, prokaryotes from which chloroplasts evolved. The CSK gene has moved, during evolution, from the ancestral chloroplast to the nuclear genomes of eukaryotic algae and green plants. The CSK protein is now synthesised in the cytosol of photosynthetic eukaryotes and imported into their chloroplasts as a protein precursor. In the model higher plant Arabidopsis thaliana, CSK is autophosphorylated and required for control of transcription of chloroplast genes by the redox state of an electron carrier connecting photosystems I and II. CSK therefore provides a redox regulatory mechanism that couples photosynthesis to gene expression. This mechanism is inherited directly from the cyanobacterial ancestor of chloroplasts, is intrinsic to chloroplasts, and is targeted to chloroplast genes.


Trends in Plant Science | 2011

A structural phylogenetic map for chloroplast photosynthesis

John F. Allen; Wilson B.M. de Paula; Sujith Puthiyaveetil; Jon Nield

Chloroplasts are cytoplasmic organelles and the sites of photosynthesis in eukaryotic cells. Advances in structural biology and comparative genomics allow us to identify individual components of the photosynthetic apparatus precisely with respect to the subcellular location of their genes. Here we present outline maps of four energy-transducing thylakoid membranes. The maps for land plants and red and green algae distinguish protein subunits encoded in the nucleus from those encoded in the chloroplast. We find no defining structural feature that is common to all chloroplast gene products. Instead, conserved patterns of gene location are consistent with photosynthetic redox chemistry exerting gene regulatory control over its own rate-limiting steps. Chloroplast DNA carries genes whose expression is placed under this control.


Plant Journal | 2009

Tethering of ferredoxin:NADP+ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL

Snježana Jurić; Kroata Hazler-Pilepić; Ana Tomašić; Hrvoje Lepeduš; Branka Jeličić; Sujith Puthiyaveetil; Tihana Bionda; Lea Vojta; John F. Allen; Enrico Schleiff; Hrvoje Fulgosi

Working in tandem, two photosystems in the chloroplast thylakoid membranes produce a linear electron flow from H(2)O to NADP(+). Final electron transfer from ferredoxin to NADP(+) is accomplished by a flavoenzyme ferredoxin:NADP(+) oxidoreductase (FNR). Here we describe TROL (thylakoid rhodanese-like protein), a nuclear-encoded component of thylakoid membranes that is required for tethering of FNR and sustaining efficient linear electron flow (LEF) in vascular plants. TROL consists of two distinct modules; a centrally positioned rhodanese-like domain and a C-terminal hydrophobic FNR binding region. Analysis of Arabidopsis mutant lines indicates that, in the absence of TROL, relative electron transport rates at high-light intensities are severely lowered accompanied with significant increase in non-photochemical quenching (NPQ). Thus, TROL might represent a missing thylakoid membrane docking site for a complex between FNR, ferredoxin and NADP(+). Such association might be necessary for maintaining photosynthetic redox poise and enhancement of the NPQ.


Plant Cell and Environment | 2012

Oxidation–reduction signalling components in regulatory pathways of state transitions and photosystem stoichiometry adjustment in chloroplasts

Sujith Puthiyaveetil; Iskander M. Ibrahim; John F. Allen

State transitions and photosystem stoichiometry adjustment are two oxidation-reduction (redox)-regulated acclimatory responses in photosynthesis. State transitions are short-term adaptations that, in chloroplasts, involve reversible post-translational modification by phosphorylation of light-harvesting complex II (LHC II). Photosystem stoichiometry adjustments are long-term responses involving transcriptional regulation of reaction centre genes. Both responses are initiated by changes in light quality and are regulated by the redox state of plastoquinone (PQ). The LHC II kinase involved in the state 2 transition is a serine/threonine kinase known as STT7 in Chlamydomonas, and as STN7 in Arabidopsis. The phospho-LHC II phosphatase that produces the state 1 transition is a PP2C-type protein phosphatase currently termed both TAP38 and PPH1. In plants and algae, photosystem stoichiometry adjustment is governed by a modified two-component sensor kinase of cyanobacterial origin - chloroplast sensor kinase (CSK). CSK is a sensor of the PQ redox state. Chloroplast sigma factor 1 (SIG1) and plastid transcription kinase (PTK) are the functional partners of CSK in chloroplast gene regulation. We suggest a signalling pathway for photosystem stoichiometry adjustment. The signalling pathways of state transitions and photosystem stoichiometry adjustments are proposed to be distinct, with the two pathways sensing PQ redox state independently of each other.


Genome Biology and Evolution | 2010

Transcriptional control of photosynthesis genes: the evolutionarily conserved regulatory mechanism in plastid genome function.

Sujith Puthiyaveetil; Iskander M. Ibrahim; Branka Jeličić; Ana Tomašić; Hrvoje Fulgosi; John F. Allen

Chloroplast sensor kinase (CSK) is a bacterial-type sensor histidine kinase found in chloroplasts—photosynthetic plastids—in eukaryotic plants and algae. Using a yeast two-hybrid screen, we demonstrate recognition and interactions between: CSK, plastid transcription kinase (PTK), and a bacterial-type RNA polymerase sigma factor-1 (SIG-1). CSK interacts with itself, with SIG-1, and with PTK. PTK also interacts directly with SIG-1. PTK has previously been shown to catalyze phosphorylation of plastid-encoded RNA polymerase (PEP), suppressing plastid transcription nonspecifically. Phospho-PTK is inactive as a PEP kinase. Here, we propose that phospho-CSK acts as a PTK kinase, releasing PTK repression of chloroplast transcription, while CSK also acts as a SIG-1 kinase, blocking transcription specifically at the gene promoter of chloroplast photosystem I. Oxidation of the photosynthetic electron carrier plastoquinone triggers phosphorylation of CSK, inducing chloroplast photosystem II while suppressing photosystem I. CSK places photosystem gene transcription under the control of photosynthetic electron transport. This redox signaling pathway has its origin in cyanobacteria, photosynthetic prokaryotes from which chloroplasts evolved. The persistence of this mechanism in cytoplasmic organelles of photosynthetic eukaryotes is in precise agreement with the CoRR hypothesis for the function of organellar genomes: the plastid genome and its primary gene products are Co-located for Redox Regulation. Genes are retained in plastids primarily in order for their expression to be subject to this rapid and robust redox regulatory transcriptional control mechanism, whereas plastid genes also encode genetic system components, such as some ribosomal proteins and RNAs, that exist in order to support this primary, redox regulatory control of photosynthesis genes. Plastid genome function permits adaptation of the photosynthetic apparatus to changing environmental conditions of light quantity and quality.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009

Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression

Sujith Puthiyaveetil; John F. Allen

Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles—chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Compartmentalization of the protein repair machinery in photosynthetic membranes

Sujith Puthiyaveetil; Onie Tsabari; Troy W. Lowry; Steven Lenhert; Robert R. Lewis; Ziv Reich; Helmut Kirchhoff

Significance The fitness and robustness of plants crucially depend on the molecular repair of the vulnerable photosystem II (PS II) supercomplex, embedded in photosynthetic thylakoid membranes. To maintain photosynthetic performance, plants evolved an efficient multistep PS II repair cycle. The PS II repair cycle relies on a well-defined order of reactions and partial separation of individual repair steps. By combining biochemical, spectroscopic, and ultrastructural techniques, we discover that plants establish reaction order and separation by confinement of the enzymes that catalyze the individual steps to spatially separated thylakoid subcompartments—grana, grana margins, and stroma lamellae—formed by the stacked membranes. Structural flexibility of the thylakoid architecture allows controlled access of the damaged PS II by the repair machinery. A crucial component of protein homeostasis in cells is the repair of damaged proteins. The repair of oxygen-evolving photosystem II (PS II) supercomplexes in plant chloroplasts is a prime example of a very efficient repair process that evolved in response to the high vulnerability of PS II to photooxidative damage, exacerbated by high-light (HL) stress. Significant progress in recent years has unraveled individual components and steps that constitute the PS II repair machinery, which is embedded in the thylakoid membrane system inside chloroplasts. However, an open question is how a certain order of these repair steps is established and how unwanted back-reactions that jeopardize the repair efficiency are avoided. Here, we report that spatial separation of key enzymes involved in PS II repair is realized by subcompartmentalization of the thylakoid membrane, accomplished by the formation of stacked grana membranes. The spatial segregation of kinases, phosphatases, proteases, and ribosomes ensures a certain order of events with minimal mutual interference. The margins of the grana turn out to be the site of protein degradation, well separated from active PS II in grana core and de novo protein synthesis in unstacked stroma lamellae. Furthermore, HL induces a partial conversion of stacked grana core to grana margin, which leads to a controlled access of proteases to PS II. Our study suggests that the origin of grana in evolution ensures high repair efficiency, which is essential for PS II homeostasis.


Philosophical Transactions of the Royal Society B | 2013

Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts

Sujith Puthiyaveetil; Iskander M. Ibrahim; John F. Allen

Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes.


FEBS Letters | 2011

A mechanism for regulation of chloroplast LHC II kinase by plastoquinol and thioredoxin

Sujith Puthiyaveetil

State transitions are acclimatory responses to changes in light quality in photosynthesis. They involve the redistribution of absorbed excitation energy between photosystems I and II. In plants and green algae, this redistribution is produced by reversible phosphorylation of the chloroplast light harvesting complex II (LHC II). The LHC II kinase is activated by reduced plastoquinone (PQ) in photosystem II‐specific low light. In high light, when PQ is also reduced, LHC II kinase becomes inactivated by thioredoxin. Based on newly identified amino acid sequence features of LHC II kinase and other considerations, a mechanism is suggested for its redox regulation.


PLOS ONE | 2011

Discrete Redox Signaling Pathways Regulate Photosynthetic Light-Harvesting and Chloroplast Gene Transcription

John F. Allen; Stefano Santabarbara; Carol A. Allen; Sujith Puthiyaveetil

In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK) is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II). Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced 32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

Collaboration


Dive into the Sujith Puthiyaveetil's collaboration.

Top Co-Authors

Avatar

John F. Allen

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helmut Kirchhoff

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Nield

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Magnus Wood

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Meng Li

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Steven Lenhert

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Troy W. Lowry

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Hrvoje Lepeduš

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Researchain Logo
Decentralizing Knowledge