Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sujoy Kumar Ghosh is active.

Publication


Featured researches published by Sujoy Kumar Ghosh.


ACS Applied Materials & Interfaces | 2014

Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide.

Andrew Winchester; Sujoy Kumar Ghosh; Simin Feng; Ana Laura Elías; Thomas E. Mallouk; Mauricio Terrones; Saikat Talapatra

We report on the electrochemical charge storage behavior of few-layered flakes of molybdenum disulfide (MoS2) obtained by liquid phase exfoliation of bulk MoS2 powder in 1-dodecyl-2-pyrrolidinone. The specific capacitances of the exfoliated flakes obtained using a 6 M KOH aqueous solution as an electrolyte were found to be an order of magnitude higher than those of bulk MoS2 (∼0.5 and ∼2 mF cm(-2) for bulk and exfoliated MoS2 electrodes, respectively). The exfoliated MoS2 flakes also showed significant charge storage in different electrolytes, such as organic solvents [1 M tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4 in PC)] and ionic liquids [1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. The values of specific capacitances obtained using Et4NBF4 in PC and BMIM-PF6 were ∼2.25 and ∼2.4 mF cm(-2), respectively. An analysis of electrochemical impedance spectroscopy using an equivalent circuit modeling was performed to understand the charge storage mechanism of these exfoliated MoS2 flakes using different electrolytes. Our findings indicate that liquid phase exfoliation methods can be used to produce large quantities of electrochemically active, two-dimensional layers of MoS2 and can act as an ideal material in several applications related to electrochemistry.


Nanotechnology | 2015

Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation.

Mehebub Alam; Sujoy Kumar Ghosh; Ayesha Sultana; Dipankar Mandal

A high-performance flexible piezoelectric hybrid nanogenerator (HNG) based on lead-free perovskite zinc stannate (ZnSnO3) nanocubes and polydimethylsiloxane (PDMS) composite with multiwall carbon nanotubes (MWCNTs) as supplement filling material is demonstrated. Even without any electrical poling treatment, the HNG possesses an open-circuit voltage of 40 V and a short-circuit current of 0.4 μA, respectively, under repeated human finger impact. It has been demonstrated that the output volume power density of 10.8 μW cm(-3) from a HNG can drive several colour light emitting diodes (LEDs) and a charge capacitor that powers up a calculator, indicating an effective means of energy harvesting power source with high energy conversion efficiency (∼1.17%) for portable electronic devices.


ACS Applied Materials & Interfaces | 2015

DNA-Assisted β-phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices.

Abiral Tamang; Sujoy Kumar Ghosh; Samiran Garain; Md. Mehebub Alam; Jörg Haeberle; Karsten Henkel; Dieter Schmeisser; Dipankar Mandal

A flexible nanogenerator (NG) is fabricated with a poly(vinylidene fluoride) (PVDF) film, where deoxyribonucleic acid (DNA) is the agent for the electroactive β-phase nucleation. Denatured DNA is co-operating to align the molecular -CH2/-CF2 dipoles of PVDF causing piezoelectricity without electrical poling. The NG is capable of harvesting energy from a variety of easily accessible mechanical stress such as human touch, machine vibration, football juggling, and walking. The NG exhibits high piezoelectric energy conversion efficiency facilitating the instant turn-on of several green or blue light-emitting diodes. The generated energy can be used to charge capacitors providing a wide scope for the design of self-powered portable devices.


RSC Advances | 2014

The in situ formation of platinum nanoparticles and their catalytic role in electroactive phase formation in poly(vinylidene fluoride): a simple preparation of multifunctional poly(vinylidene fluoride) films doped with platinum nanoparticles

Sujoy Kumar Ghosh; Md. Mehebub Alam; Dipankar Mandal

A simple route for in situ platinum nanoparticles (Pt-NPs) synthesis is described. A trace amount (0.048 mM) of platinum precursor promotes the electroactive phase transformations (α → β and γ-phase) in poly(vinylidene fluoride) (PVDF) implying a new catalytic role of Pt-NPs. Furthermore, a complete conversion (∼99%) to the electroactive phase is achieved by simply controlling the platinum precursor amount. The PVDF film doped with Pt-NPs exhibits various functionalities, i.e., human touch response, enhanced ferroelectric remnant polarization and intense photoluminance in the UV-region. Apart from conventional piezoelectric sensors and actuators, it naturally lends itself to futuristic applications as a vibration based energy harvester, a ferroelectric non-volatile memory element and a large area coverage lightweight foldable optoelectronic device.


Applied Physics Letters | 2016

High-performance bio-piezoelectric nanogenerator made with fish scale

Sujoy Kumar Ghosh; Dipankar Mandal

Energy harvesting performance of an efficient flexible bio-piezoelectric nanogenerator (BPNG) is demonstrated, where “bio-waste” transparent fish scale (FSC), composed of self-assembled and ordered collagen nano-fibrils, serves as a self-poled piezoelectric active component, exhibiting intrinsic piezoelectric strength of −5.0 pC/N. The dipolar orientation (∼19%) of the self-polarized FSC collagen is confirmed by the angular dependent near edge X-ray absorption fine structure spectroscopy. The BPNG is able to scavenge several types of ambient mechanical energies such as body movements, machine and sound vibrations, and wind flow which are abundant in living environment. Furthermore, as a power source, it generates the output voltage of 4 V, the short circuit current of 1.5 μA, and the maximum output power density of 1.14 μW/cm2 under repeated compressive normal stress of 0.17 MPa. In addition, serially integrated four BPNGs are able to produce enhanced output voltage of 14 V that turn on more than 50 blue light emitting diodes instantly, proving its essentiality as a sustainable green power source for next generation self-powered implantable medical devices as well as for personal portable electronics with reduced e-waste elements.


ACS Applied Materials & Interfaces | 2016

Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor

Tridib Kumar Sinha; Sujoy Kumar Ghosh; Rishi Maiti; Santanu Jana; Basudam Adhikari; Dipankar Mandal; S. K. Ray

Plasmonic characteristics of graphene-silver (GAg) nanocomposite coupled with piezoelectric property of Poly(vinylidene fluoride) (PVDF) have been utilized to realize a new class of self-powered flexible plasmonic nanogenerator (PNG). A few layer graphene has been prepared in a facile and cost-effective method and GAg doped PVDF hybrid nanocomposite (PVGAg) is synthesized in a one-pot method. The PNG exhibits superior piezoelectric energy conversion efficiency (∼15%) under the dark condition. The plasmonic behavior of GAg nanocomposite makes the PNG highly responsive to the visible light illumination that leads to ∼50% change in piezo-voltage and ∼70% change in piezo-current, leading to enhanced energy conversion efficiency up to ∼46.6%. The piezoelectric throughput of PNG (e.g., capacitor charging performance) has been monitored during the detection of the different wavelengths of visible light illumination and showed maximum selectivity to the green light. The simultaneous mechanical energy harvesting and visible-light detection capabilities of the PNG are attractive for futuristic self-powered optoelectronic smart sensors and devices.


Nanotechnology | 2016

Improved breakdown strength and electrical energy storage performance of γ-poly(vinylidene fluoride)/unmodified montmorillonite clay nano-dielectrics.

Sujoy Kumar Ghosh; Wahida Rahman; Tapas Ranjan Middya; Shrabanee Sen; Dipankar Mandal

A remarkable improvement in the dielectric breakdown strength (Eb) and discharge energy density (U e) of flexible polymer nanocomposites is realized by the incorporation of unmodified smectite montmorillonite (MMT) nanoclay into a poly(vinylidene fluoride) (PVDF) matrix. The resulting PVDF/MMT clay nanocomposite (PCN) films stabilize the γ phase and increase the path tortuosity via strong intercalation of the PVDF matrix into inorganic layered silicates without sacrificing the quality of surface morphology. The PCN films exhibits superior dielectric properties (up to ε r ∼ 28 and tan δ ∼ 0.032 at 1 kHz) than those of pure PVDF. As a result, a large increase in E b of 873 MV m(-1) and U e of 24.9 J cm(-3) is achieved. Subsequently, the PCN films possess more than 60% charge-discharge efficiency even at higher electric field and thus provide a scope to develop high energy density flexible and transparent materials for energy storage technologies.


Journal of Applied Physics | 2016

Porous polymer composite membrane based nanogenerator: A realization of self-powered wireless green energy source for smart electronics applications

Sujoy Kumar Ghosh; Tridib Kumar Sinha; Biswajit Mahanty; Santanu Jana; Dipankar Mandal

An efficient, flexible and unvaryingly porous polymer composite membrane based nanogenerator (PPCNG) without any electrical poling treatment has been realised as wireless green energy source to power up smart electronic gadgets. Owing to self-polarized piezo- and ferro-electretic phenomenon of in situ platinum nanoparticles (Pt-NPs) doped porous poly(vinylidenefluoride-co-hexafluoropropylene)–membrane, a simple, inexpensive and scalable PPCNG fabrication is highlighted. The molecular orientations of the -CH2/-CF2 dipoles that cause self-polarization phenomenon has been realized by angular dependent near edge X-ray absorption fine structure spectroscopy. The square-like hysteresis loop with giant remnant polarization, Pr ∼ 68 μC/cm2 and exceptionally high piezoelectric charge coefficient, d33 ∼  − 836 pC/N promises a best suited ferro- and piezo-electretic membrane. The PPCNG exhibits a high electrical throughput such as, ranging from 2.7 V to 23 V of open-circuit voltage (Voc) and 2.9 μA to 24.7 μA of sho...


Applied Physics Letters | 2017

Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring

Sujoy Kumar Ghosh; Dipankar Mandal

A human interactive self-powered wearable sensor is designed using waste by-product prawn shells. The structural origin of intrinsic piezoelectric characteristics of bio-assembled chitin nanofibers has been investigated. It allows the prawn shell to make a tactile sensor that performs also as a highly durable mechanical energy harvester/nanogenerator. The feasibility and fundamental physics of self-powered consumer electronics even from human perception is highlighted by prawn shells made nanogenerator (PSNG). High fidelity and non-invasive monitoring of vital signs, such as radial artery pulse wave and coughing actions, may lead to the potential use of PSNG for early intervention. It is presumed that PSNG has enormous future aspects in real-time as well as remote health care assessment.


Journal of Applied Physics | 2016

Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method

Ahmed S. Al-Asadi; Luke Henley; Sujoy Kumar Ghosh; Abdiel Quetz; Igor Dubenko; Nihar R. Pradhan; L. Balicas; Nestor Perea-Lopez; Victor Carozo; Zhong Lin; Mauricio Terrones; Saikat Talapatra; Naushad Ali

Highly crystalline zinc oxide (ZnO) nanowires (NWs) were synthesized through chemical bath deposition (CBD) method by using a simple seeding technique. The process includes dispersion of commercially available ZnO nanoparticles through spraying on a desired substrate prior to the CBD growth. A typical growth period of 16 h produced ZnO NW assemblies with an average diameter of ∼45 nm and lengths of 1–1.3 μm, with an optical band gap of ∼3.61 eV. The as-prepared ZnO NWs were photoactive under ultra violet (UV) illumination. Photodetector devices fabricated using these NW assemblies demonstrated a high photoresponse factor of ∼40 and 120 at room temperature under moderate UV illumination power of ∼250 μW/cm2. These findings indicate the possibility of using ZnO NWs, grown using the simple method discussed in this paper, for various opto-electronic applications.

Collaboration


Dive into the Sujoy Kumar Ghosh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saikat Talapatra

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Winchester

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mauricio Terrones

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge