Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suk Yun Kang is active.

Publication


Featured researches published by Suk Yun Kang.


British Journal of Pharmacology | 2011

Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation

Dae Hyun Roh; Sheu Ran Choi; Seo Yeon Yoon; Suk Yun Kang; Ji Young Moon; Soon Gu Kwon; Ho Jae Han; Alvin J. Beitz; Jang Hern Lee

BACKGROUND AND PURPOSE We recently demonstrated that activation of the spinal sigma‐1 receptor induces mechanical and thermal hypersensitivity via calcium‐dependent second messenger cascades and phosphorylation of the spinal NMDA receptor GluN1 subunit (pGluN1). Here we examined the role of NO in this process, as it plays a critical role in PKC‐mediated calcium signalling and the potentiation of NMDA receptor function.


Neuropharmacology | 2010

An increase in spinal dehydroepiandrosterone sulfate (DHEAS) enhances NMDA-induced pain via phosphorylation of the NR1 subunit in mice: involvement of the sigma-1 receptor.

Seo Yeon Yoon; Dae Hyun Roh; Hyoung Sig Seo; Suk Yun Kang; Ji Young Moon; Sun-Ok Song; Alvin J. Beitz; Jang Hern Lee

Our laboratory has recently demonstrated that an increase in the spinal neurosteroid, dehydroepiandrosterone sulfate (DHEAS) facilitates nociception via the activation of sigma-1 receptors and/or the allosteric inhibition GABA(A) receptors. Several lines of evidence have suggested that DHEAS positively modulates N-methyl-d-aspartate (NMDA) receptor activity within the central nervous system. Moreover, we have demonstrated that the activation of sigma-1 receptors increases NMDA receptor activity. Since NMDA receptors play a key role in the enhancement of pain perception, the present study was designed to determine whether spinally administered DHEAS modulates NMDA receptor-mediated nociceptive activity and whether this effect is mediated by sigma-1 or GABA(A) receptors. Intrathecal (i.t.) DHEAS was found to significantly potentiate i.t. NMDA-induced spontaneous pain behaviors. Subsequent immunohistochemical analysis demonstrated that i.t. DHEAS also increased protein kinase C (PKC)- and protein kinase A (PKA)-dependent phosphorylation of the NMDA receptor subunit NR1 (pNR1), which was used as a marker of NMDA receptor sensitization. The sigma-1 receptor antagonist, BD-1047, but not the GABA(A) receptor agonist, muscimol, dose-dependently suppressed DHEASs facilitatory effect on NMDA-induced nociception and pNR1 expression. In addition, pretreatment with either a PKC or PKA blocker significantly reduced the facilitatory effect of DHEAS on NMDA-induced nociception. Conversely the GABA(A) receptor antagonist, bicuculline did not affect NMDA-induced pain behavior or pNR1 expression. The results of this study suggest that the DHEAS-induced enhancement of NMDA-mediated nociception is dependent on an increase in PKC- and PKA-dependent pNR1. Moreover, this effect of DHEAS on NMDA receptor activity is mediated by the activation of spinal sigma-1 receptors and not through the inhibition of GABA(A) receptors.


British Journal of Pharmacology | 2009

Intrathecal injection of the neurosteroid, DHEAS, produces mechanical allodynia in mice: involvement of spinal sigma-1 and GABAA receptors

Seo Yeon Yoon; Dae Hyun Roh; Hyoung Sig Seo; Suk Yun Kang; Ho Jae Han; Alvin J. Beitz; Jang Hern Lee

Background and purpose:  The neurosteroid, dehydroepiandrosterone sulphate (DHEAS) and its non‐sulphated form, DHEA, are considered as crucial endogenous modulators of a number of important physiological events. Evidence suggests that DHEAS and DHEA modulate central nervous system‐related functions by activating sigma‐1 receptors and/or allosterically inhibiting γ‐aminobutyric acic receptor type A (GABAA) receptors. As both the sigma‐1 receptor and the GABAA receptor play important roles in spinal pain transmission, the present study was designed to examine whether intrathecally injected DHEAS or DHEA affect nociceptive signalling at the spinal cord level.


Neuroscience Letters | 2010

Sigma-1 receptor-induced increase in murine spinal NR1 phosphorylation is mediated by the PKCα and ɛ, but not the PKCζ, isoforms

Dae Hyun Roh; Seo Yeon Yoon; Hyoung Sig Seo; Suk Yun Kang; Ji Young Moon; Sun-Ok Song; Alvin J. Beitz; Jang Hern Lee

Our previous studies have demonstrated that intrathecal (i.t.) administration of a sigma-1 receptor agonist facilitated peripheral nociception via calcium-dependent second messenger cascades including protein kinase C (PKC). We also showed that activation of spinal sigma-1 receptors increased the phosphorylation of the NMDA receptor NR1 subunit (pNR1) in the spinal cord dorsal horn, which resulted in the potentiation of NMDA receptor function. The present study was designed to examine the effect of different PKC isoform inhibitors on sigma-1 receptor-mediated pain facilitation and increased spinal pNR1 expression in mice. The intrathecal injection of the sigma-1 receptor agonist, PRE-084 (PRE, 3nmol/5mul) increased the frequency of paw withdrawal responses to mechanical stimuli (0.6g) and the number of spinal pNR1-immunoreactive (ir) cells. Intrathecal pretreatment with inhibitors (Go6976, PKCepsilonV1-2 or PKC zetapseudosubstrate) of the PKCalpha, epsilon or zeta isoforms significantly reduced the PRE-induced pain facilitatory effect. On the other hand, the PRE-induced increase in the number of spinal pNR1-ir neurons was only blocked by inhibitors of the PKCalpha and PKCepsilon isoforms, but not the PKCzeta isoform. These findings demonstrate that the sigma-1 receptor-induced increase in spinal pNR1 expression is mediated by the PKCalpha and PKC epsilon isoforms, which in turn contribute to the pain facilitation phenomenon. Conversely, the sigma-1 receptor activation of the PKCzeta isoform appears to be involved in a pain signaling pathway that is independent of spinal pNR1 modulation.


Experimental Neurology | 2013

Sigma-1 receptor-mediated increase in spinal p38 MAPK phosphorylation leads to the induction of mechanical allodynia in mice and neuropathic rats

Ji Young Moon; Dae Hyun Roh; Seo Yeon Yoon; Suk Yun Kang; Sheu Ran Choi; Soon Gu Kwon; Hoon Seong Choi; Ho Jae Han; Alvin J. Beitz; Jang Hern Lee

The direct activation of the spinal sigma-1 receptor (Sig-1R) produces mechanical allodynia (MA) and thermal hyperalgesia (TH) in mice. In addition, the blockade of the spinal Sig-1R prevents the induction of MA, but not TH in chronic constriction injury (CCI)-induced neuropathic rats. The present study was designed to investigate whether the increase in spinal p38 MAPK phosphorylation (p-p38 MAPK) mediates Sig-1R-induced MA or TH in mice and the induction of MA in neuropathic rats. MA and TH were evaluated using von Frey filaments and a hot-plate apparatus, respectively. Neuropathic pain was produced by CCI of the right sciatic nerve in rats. Western blot assay and immunohistochemistry were performed to determine the changes of p-p38 MAPK expression in the spinal cord. Intrathecal (i.t.) injection of PRE084, a selective Sig-1R agonist, into naïve mice time-dependently increased the expression of p-p38 MAPK, which was blocked by pretreatment with BD1047, a Sig-1R antagonist. I.t. pretreatment with SB203580, a p38 MAPK inhibitor also dose-dependently inhibited PRE084-induced MA, whereas TH induction was not affected. In CCI rats, i.t. injection of BD1047 during the induction phase (postoperative days 0 to 5) reduced the CCI-induced increase in p-p38 MAPK. In addition, i.t. SB203580 treatment during the induction phase also suppressed the development of CCI-induced MA, but not TH. Conversely, i.t. SB203580 treatment during the maintenance phase (postoperative days 15 to 20) had no effect on CCI-induced MA or TH. These results demonstrate that the increase in spinal p-p38 MAPK is closely associated with the induction of Sig-1R mediated MA, but not TH. Sigma-1 receptor modulation of p-p38 MAPK also plays an important role in the induction, but not the maintenance, of MA in neuropathic pain.


Pharmacological Research | 2013

Spinal sigma-1 receptors activate NADPH oxidase 2 leading to the induction of pain hypersensitivity in mice and mechanical allodynia in neuropathic rats.

Sheu Ran Choi; Dae Hyun Roh; Seo Yeon Yoon; Suk Yun Kang; Ji Young Moon; Soon Gu Kwon; Hoon Seong Choi; Ho Jae Han; Alvin J. Beitz; Seog Bae Oh; Jang Hern Lee

We have recently demonstrated that spinal sigma-1 receptors (Sig-1Rs) mediate pain hypersensitivity in mice and neuropathic pain in rats. In this study, we examine the role of NADPH oxidase 2 (Nox2)-induced reactive oxygen species (ROS) on Sig-1R-induced pain hypersensitivity and the induction of chronic neuropathic pain. Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in rats. Mechanical allodynia and thermal hyperalgesia were evaluated in mice and CCI-rats. Western blotting and dihydroethidium (DHE) staining were performed to assess the changes in Nox2 activation and ROS production in spinal cord, respectively. Direct activation of spinal Sig-1Rs with the Sig-1R agonist, PRE084 induced mechanical allodynia and thermal hyperalgesia, which were dose-dependently attenuated by pretreatment with the ROS scavenger, NAC or the Nox inhibitor, apocynin. PRE084 also induced an increase in Nox2 activation and ROS production, which were attenuated by pretreatment with the Sig-1R antagonist, BD1047 or apocynin. CCI-induced nerve injury produced an increase in Nox2 activation and ROS production in the spinal cord, all of which were attenuated by intrathecal administration with BD1047 during the induction phase of neuropathic pain. Furthermore, administration with BD1047 or apocynin reversed CCI-induced mechanical allodynia during the induction phase, but not the maintenance phase. These findings demonstrate that spinal Sig-1Rs modulate Nox2 activation and ROS production in the spinal cord, and ultimately contribute to the Sig-1R-induced pain hypersensitivity and the peripheral nerve injury-induced induction of chronic neuropathic pain.


The Journal of Pain | 2012

Repetitive Treatment With Diluted Bee Venom Reduces Neuropathic Pain Via Potentiation of Locus Coeruleus Noradrenergic Neuronal Activity and Modulation of Spinal NR1 Phosphorylation in Rats

Suk Yun Kang; Dae Hyun Roh; Seo Yeon Yoon; Ji Young Moon; Hyun Woo Kim; Hyejung Lee; Alvin J. Beitz; Jang Hern Lee

UNLABELLED We previously demonstrated that a single injection of diluted bee venom (DBV) temporarily alleviates thermal hyperalgesia, but not mechanical allodynia, in neuropathic rats. The present study was designed to determine whether repetitive injection of DBV produces more potent analgesic effects on neuropathy-induced nociception and whether those effects are associated with increased neuronal activity in the locus coeruleus (LC) and with the suppression of spinal NMDA receptor NR1 subunit phosphorylation (pNR1). DBV (.25 mg/kg) was administered subcutaneously twice a day for 2 weeks beginning on day 15 post-chronic constrictive injury surgery. Pain responses were examined and potential changes in LC Fos expression and spinal pNR1 expression were determined. Repetitive DBV administration significantly reduced mechanical allodynia, as well as thermal hyperalgesia. The activity of LC noradrenergic neurons was increased and spinal pNR1 expression was significantly suppressed by repetitive DBV as compared with those of vehicle or single DBV injection. These suppressive effects of repetitive DBV on neuropathic pain and spinal pNR1 were prevented by intrathecal pretreatment of idazoxan, an alpha-2 adrenoceptor antagonist. These results indicate that repetitive DBV produces potent analgesic effects on neuropathic pain and this is associated with the activation of the LC noradrenergic system and with a reduction in spinal pNR1. PERSPECTIVE The results of current study demonstrate that repetitive administration of DBV significantly suppresses neuropathic pain. Furthermore, this study provides mechanistic information that repetitive treatment of DBV can produce more potent analgesic effect than single DBV treatment, indicating a potential novel strategy for the management of chronic pain.


Neuropharmacology | 2014

Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: Involvement of p38 MAPK phosphorylation in DRGs

Soon Gu Kwon; Dae Hyun Roh; Seo Yeon Yoon; Ji Young Moon; Sheu Ran Choi; Hoon Seong Choi; Suk Yun Kang; Ho Jae Han; Alvin J. Beitz; Jang Hern Lee

Although previous reports have suggested that P2Y1 receptors (P2Y1Rs) are involved in cutaneous nociceptive signaling, it remains unclear how P2Y1Rs contribute to peripheral sensitization. The current study was designed to delineate the role of peripheral P2Y1Rs in pain and to investigate potential linkages to mitogen-activated protein kinase (MAPK) in DRGs and Transient Receptor Potential Vanilloid 1 (TRPV1) expression in a rodent inflammatory pain model. Following injection of 2% carrageenan into the hind paw, expressions of P2Y1 and TRPV1 and the phosphorylation rates of both p38 MAPK and ERK but not JNK were increased and peaked at day 2 post-injection. Blockade of peripheral P2Y1Rs by the P2Y1R antagonist, MRS2500 injection (i.pl, D0 to D2) significantly reduced the induction of thermal hyperalgesia, but not mechanical allodynia. Simultaneously, MRS2500 injections suppressed upregulated TRPV1 expression and DRG p38 phosphorylation, while pERK signaling was not affected. Furthermore, inhibition of p38 activation in the DRGs by SB203580 (a p38 inhibitor, i.t, D0 to D2) prevented the upregulation of TRPV1 and a single i.t injection of SB203580 reversed the established thermal hyperalgesia, but not mechanical allodynia. Lastly, to identify the mechanism of action of P2Y1Rs, we repeatedly injected the P2Y1 agonist, MRS2365 into the naïve rats hind paw and observed a dose-dependent increase in TRPV1 expression and p38 MAPK phosphorylation. These data demonstrate a sequential role for P2Y1R, p38 MAPK and TRPV1 in inflammation-induced thermal hyperalgesia; thus, peripheral P2Y1Rs activation modulates p38 MAPK signaling and TRPV1 expression, which ultimately leads to the induction of thermal hyperalgesia.


Brain Research Bulletin | 2011

Chemical stimulation of the ST36 acupoint reduces both formalin-induced nociceptive behaviors and spinal astrocyte activation via spinal alpha-2 adrenoceptors

Suk Yun Kang; Chi Young Kim; Dae Hyun Roh; Seo Yeon Yoon; Ji Ho Park; Hyejung Lee; Alvin J. Beitz; Jang Hern Lee

Spinal astrocytes have emerged as important mechanistic contributors to pathological and chronic pain. Recently, we have demonstrated that injection of diluted bee venom (DBV) into the Zusanli (ST36) acupoint produces a potent anti-nociceptive effect via the activation of spinal alpha-2 adrenoceptors. However, it is unclear if this anti-nociceptive effect is associated with alterations in spinal astrocytes. Thus, the present study was designed to determine: (1) whether DBVs anti-nociceptive effect in the formalin test involves suppression of spinal astrocyte activation; (2) whether DBV-induced astrocyte inhibition is mediated by spinal alpha-2 adrenoceptors; and (3) whether this glial modulation is potentiated by intrathecal administration of the glial metabolic inhibitor, fluorocitrate (FC) in combination with DBV injection. DBV was injected directly into the ST36 acupoint, and spinal expression of the astrocytic marker, glial fibrillary acidic protein (GFAP), was assessed together with effects on formalin-induced nociception. DBV treatment reduced pain responses in the late phase of the formalin test and significantly blocked the formalin-evoked increase in spinal GFAP expression. These effects of DBV were prevented by intrathecal pretreatment with selective alpha-2A and alpha-2C adrenoceptor antagonists. Moreover, low dose intrathecal injection of FC in conjunction with low dose DBV injection into the ST36 acupoint synergistically suppressed pain responses and GFAP expression. These results demonstrate that DBV stimulation of the ST36 acupoint inhibits the formalin-induced activation of spinal astrocytes and nociceptive behaviors in this inflammatory pain model and this inhibition is associated with the activation of spinal alpha-2 adrenoceptors.


The Journal of Pain | 2010

Peripheral acid-sensing ion channels and P2X receptors contribute to mechanical allodynia in a rodent thrombus-induced ischemic pain model.

Hyoung Sig Seo; Dae Hyun Roh; Seo Yeon Yoon; Suk Yun Kang; Ji Young Moon; Hyun Woo Kim; Ho Jae Han; Jin Mo Chung; Alvin J. Beitz; Jang Hern Lee

UNLABELLED We have previously established a thrombus-induced ischemic pain (TIIP) model in the rat, which mimics the pathophysiology of ischemic pain in patients with peripheral arterial disease. Because ischemia commonly induces acidosis and ATP release, one of the goals of this study was to investigate the role of acid-sensing ion channels (ASICs), transient receptor potential vanilloid-1 (TRPV1) receptors, and P2X receptors in the maintenance of ischemia-induced mechanical allodynia (MA). To test this, amiloride (an ASIC blocker), AMG-9810 (a TRPV1 blocker), or PPADS (a P2Xs antagonist) was intraplantarly injected at day 3 after FeCl(2) application onto the femoral artery. Ipsilateral administration of amiloride or PPADS but not AMG-9810 dose-dependently reduced MA. However, contralateral amiloride or PPADS did not suppress contralateral MA. Interestingly, co-administration of submaximal doses of amiloride and PPADS produced a significantly prolonged suppression of MA. Furthermore, ipsilateral EGTA (a calcium chelator) or chelerythrine (a protein kinase C inhibitor) also significantly reduced MA. Collectively, these findings suggest that peripheral ASICs and P2X receptors are involved in the maintenance of TIIP, which is possibly mediated by a Ca(2+)-protein kinase C signaling mechanism. These results provide mechanistic information about peripheral ischemic nociception that may be useful for developing better therapeutic management of ischemic pain in patients with peripheral arterial disease. PERSPECTIVE The results of the current study demonstrate that peripheral administration of an ASICs blocker or P2X antagonist significantly suppress TIIP. Co-administration of submaximal doses of ASIC and P2X antagonists produced an even greater effect. These results implicate peripheral ASICs and P2X receptors in the maintenance of thrombus-induced ischemic pain.

Collaboration


Dive into the Suk Yun Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jang Hern Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Young Moon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ho Jae Han

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sheu Ran Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Soon Gu Kwon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hoon Seong Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyoung Sig Seo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyun Woo Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge