Sukanta Mandal
Indian Institute of Technology Kanpur
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sukanta Mandal.
Chemical Science | 2012
Matthew L. Rigsby; Sukanta Mandal; Wonwoo Nam; Lara C. Spencer; Antoni Llobet; Shannon S. Stahl
Several binuclear cobalt(III) complexes that mimic Ru-based water oxidation catalysts have been prepared. The initial complexes exhibited thermodynamic instability and kinetic lability that complicated efforts to use these cobalt complexes as electrocatalysts for water oxidation. Binuclear cobalt(III) complexes supported by a bridging bispyridylpyrazolate (bpp) ligand overcome these limitations. Two bpp-ligated dicobalt(III)-peroxo complexes were prepared and structurally characterized, and electrochemical investigation of these complexes supports their ability to serve as molecular electrocatalysts for water oxidation under acidic conditions (pH 2.1).
Journal of the American Chemical Society | 2013
Sukanta Mandal; Shinya Shikano; Yusuke Yamada; Yong-Min Lee; Wonwoo Nam; Antoni Llobet; Shunichi Fukuzumi
A dinuclear Co complex with bis(pyridyl)pyrazolato (bpp(-)) and terpyridine (trpy) ligands, [Co(III)2(trpy)2(μ-bpp)(OH)(OH2)](4+) (1(4+)), undergoes three-electron reduction by cobaltocene in acetonitrile to produce 1(+), which is in the protonation equilibrium with the Co(II)Co(III)-hydride complex, and the further protonation of the hydride by trifluoroacetic acid yields hydrogen quantitatively. The kinetic study together with the detection of the Co(II)Co(III)-hydride complex revealed the mechanism of the hydrogen production by the reaction of 1(+) with trifluoroacetic acid.
Journal of the American Chemical Society | 2012
Shunichi Fukuzumi; Sukanta Mandal; Kentaro Mase; Kei Ohkubo; Hyejin Park; Jordi Benet-Buchholz; Wonwoo Nam; Antoni Llobet
Four-electron reduction of O(2) by octamethylferrocene (Me(8)Fc) occurs efficiently with a dinuclear cobalt-μ-1,2-peroxo complex, 1, in the presence of trifluoroacetic acid in acetonitrile. Kinetic investigations of the overall catalytic reaction and each step in the catalytic cycle showed that proton-coupled electron transfer from Me(8)Fc to 1 is the rate-determining step in the catalytic cycle.
Inorganic Chemistry | 2009
Sukanta Mandal; V. Balamurugan; Francesc Lloret; Rabindra Nath Mukherjee
Four dinuclear nickel(II) complexes [Ni(II)(2)(L(1))(O(2)CMe)(2)(H(2)O)(2)][PF(6)].MeOH.3H(2)O (1), [Ni(II)(2)(L(1))(O(2)CMe)(2)(NCS)] (2), [Ni(II)(2)(L(2))(O(2)CMe)(2)(MeOH)(H(2)O)][ClO(4)] (3), and [Ni(II)(2)(L(2))(O(2)CMe)(2)(MeOH)(H(2)O)][BPh(4)].3MeOH.H(2)O (4) have been synthesized [HL(1): 2,6-bis[N-methyl-N-(2-pyridylethyl)amino]-4-methylphenol; HL(2): 2,6-bis[3-(pyridin-2-yl)pyrazol-1-ylmethyl]-4-methylphenol]. Complexes 1, 3, and 4 are new while complex 2 was reported previously by Fenton and co-workers (the structure of 2 was presented but no physicochemical properties of this complex were reported; in this work such studies have been completed). X-ray crystallographic analyses of 1 and 4 reveal that each nickel(II) center is six-coordinate, terminally coordinated by two nitrogen donors [(pyridin-2-yl)ethylamine unit in 1 and 3-(pyridin-2-yl)pyrazole moiety in 4], and bridged by an endogenous phenolate ion. Each of the acetate ions in 1 adopts a eta(2)-coordination mode (chelating) whereas in 4 each is coordinated in a mu-eta(1):eta(1) syn-syn bridging mode. In 1 each Ni(II) center has water coordination whereas in 4 one Ni(II) center has a methanol and the other has water coordination. The X-ray structure of 3 could not be determined. The physicochemical properties (electronic spectroscopy and cyclic voltammetry) of the cation of 3 are identical to that of 4. Magnetic susceptibility measurements have revealed the occurrence of ferromagnetic coupling of spins of the nickel(II) centers in 2 [J = +9.80 cm(-1)]. The nickel(II) centers in 1 and 3 are antiferromagnetically coupled, but to different extents [J = -48.4 cm(-1) (1); J = -1.24 cm(-1) (3)]. The magnetic properties are correlated with the nature of bridges between the nickel(II) ions. The two coordinated aqua ligands in 1 and the aqua and methanol ligands in 3 have enabled these dinuclear nickel(II) complexes to function as catalysts in the hydrolysis of 2-hydroxypropyl-p-nitrophenylphosphate (HPNP). Complex 1 is more effective in the conversion of substrate to product (p-nitrophenolate ion) than 3, under identical experimental conditions. Pseudo first-order kinetic treatment has been done for complexes 1 and 3. Temperature-dependent measurements were done to evaluate kinetic/thermodynamic parameters for the hydrolysis/transesterification reaction of HPNP and to propose a mechanistic pathway. The activation parameters are DeltaH(++) = 64 kJ mol(-1), DeltaS(++) = -104 J mol(-1) K(-1) for 1 and DeltaH(++) = 68 kJ mol(-1), DeltaS(++) = -109 J mol(-1) K(-1) for 3. A mechanism consistent with the kinetic data is presented.
Journal of Inorganic Biochemistry | 2008
Anindita De; Sukanta Mandal; Rabindranath Mukherjee
Synthetic modeling of tyrosinase (o-phenol ring hydroxylation) has emerged as a novel class of successful biomimetic studies. It is a well-established fact that the reaction of dioxygen with copper(I) complexes of m-xylyl-based ligands generate putative copper-oxygen intermediate species such as side-on peroxo {CuII2(mu-O2)}2+ [in some cases bis-oxo {CuIII2(mu-O)2}2+ in equilibrium with isomeric side-on peroxo], due to oxygen activation. Electrophilic attack of such species brings about monooxygenase activity by incorporating one of the oxygens to m-xylyl ring of the ligand and the other oxygen is reduced to hydroxide ion. The goal of this review is to provide a concise overview of the present day knowledge in this field of research to emphasize the important role the designed ligands play in eliciting the desired tyrosinase-like chemistry.
Inorganic Chemistry | 2011
Arnau Arbuse; Sukanta Mandal; Somnath Maji; Ma Ángeles Martínez; Xavier Fontrodona; Diana Utz; Frank W. Heinemann; Sandra Kisslinger; Siegfried Schindler; Xavier Sala; Antoni Llobet
The preparation and characterization of three new macrocyclic ligands with pendant arms based on the [2+2] condensation of isophthalaldehyde and the corresponding triamine substituted at the central N-atom is reported. None of these new macrocyclic ligands undergo any equilibrium reaction, based on imine hydrolysis to generate [1+1] macrocyclic formation or higher oligomeric compounds, such as [3+3], [4+4], etc., at least within the time scale of days. This indicates the stability of the newly generated imine bond. In sharp contrast, the reaction of the [2+2] macrocyclic Schiff bases with Cu(I) generates the corresponding dinuclear Cu(I) complexes [Cu(2)(L(1))](2+), 1(2+); [Cu(2)(L(2))(CH(3)CN)(2)](2+), 2(2+); and [Cu(2)(L(3))(CH(3)CN)(2)](2+), 3(2+), together with their trinuclear Cu(I) homologues [Cu(3)(L(4))](3+), 4(3+); [Cu(3)(L(5))(CH(3)CN)(3)](3+), 5(3+); and [Cu(3)(L(6))(CH(3)CN)(3)](3+), 6(3+), where the [2+2] ligand has undergone an expansion to the corresponding [3+3] Schiff base that is denoted as L(4), L(5), or L(6). The conditions under which the dinuclear and trinuclear complexes are formed were analyzed in terms of solvent dependence and synthetic pathways. The new complexes are characterized in solution by NMR, UV-vis, and MS spectroscopy and in the solid state by X-ray diffraction analysis and IR spectroscopy. For the particular case of the L(2) ligand, MS spectroscopy is also used to monitor the metal assisted transformation where the dinuclear complex 2(2+) is transformed into the trinuclear complex 5(3+). The Cu(I) complexes described here, in general, react slowly (within the time scale of days) with molecular oxygen, except for the ones containing the phenolic ligands 2(2+) and 5(3+) that react a bit faster.
Chemistry & Biodiversity | 2008
Sukanta Mandal; Anindita De; Rabindranath Mukherjee
Reaction of a CuI complex of a hybrid tridentate ligand, encompassing [2‐(pyridin‐2‐yl)ethyl]amine and dimethyl‐substituted ethylalkylamine with dioxygen, generates in acetone at −80° putative bis(μ‐oxo)dicopper(III) intermediate. Structural characterization of a PPh3‐adduct of a mononuclear CuI complex of this new ligand has been achieved. This ligand coordinates in a facial mode utilizing three N‐atoms (CH2CH2Py, CH2CH2NMe2, and NCH2Ph). Reactivity of bis(μ‐oxo)dicopper(III) intermediate toward exogenous substrates (2,4‐di(tert‐butyl)phenol and 2,4,6‐tri(tert‐butyl)phenol) has also been investigated.
Nature Chemistry | 2012
Lele Duan; Fernando Bozoglian; Sukanta Mandal; Beverly Stewart; Timofei Privalov; Antoni Llobet; Licheng Sun
Inorganic Chemistry | 2013
Dachao Hong; Sukanta Mandal; Yusuke Yamada; Yong-Min Lee; Wonwoo Nam; Antoni Llobet; Shunichi Fukuzumi
Inorganic Chemistry | 2012
Sukanta Mandal; Jhumpa Mukherjee; Francesc Lloret; Rabindranath Mukherjee