Sukwon Jung
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sukwon Jung.
Langmuir | 2012
Sukwon Jung; Hyunmin Yi
We demonstrate a facile scheme to fabricate nonspherical chitosan-poly(ethylene glycol) (PEG) microparticle platforms for conjugation of biomolecules with high surface density. Specifically, we show that PEG microparticles containing short chitosan oligomers are readily fabricated via replica molding (RM). Fluorescence and FTIR microscopy results illustrate that these chitosan moieties are incorporated with PEG networks in a stable manner while retaining chemical reactivity toward amine-reactive chemistries. The chitosan-PEG particles are then conjugated with single-stranded (ss) DNAs via Cu-free click chemistry. Fluorescence and confocal microscopy results show facile conjugation of biomolecules with the chitosan-PEG particles under mild conditions with high selectivity. These ssDNA-conjugated chitosan-PEG particles are then enlisted to assemble tobacco mosaic virus (TMV) via nucleic acid hybridization as an example of orientationally controlled conjugation of supramolecular targets. Results clearly show controllable TMV assembly with high surface density, indicating high surface DNA density on the particles. Combined, these results demonstrate a facile fabrication-conjugation scheme for robust biomolecular conjugation or assembly platforms. We expect that our approach can be enlisted in a wide array of biomolecular targets and applications.
Biomacromolecules | 2013
Sukwon Jung; Hyunmin Yi
We demonstrate a facile fabrication-conjugation scheme for protein-conjugated biosensing platforms. Specifically, we utilize a chitosan-poly(ethylene glycol) hybrid system to fabricate highly uniform and chemically reactive microparticle platforms via simple replica molding. Strain-promoted alkyne-azide cycloaddition (SPAAC) reaction between azide-modified proteins and microparticles activated with strain-promoted cyclooctynes allows tunable protein conjugation under mild reaction conditions. Upon conjugation of a model red fluorescent protein, fluorescence and confocal micrographs show selective protein conjugation near the particle surfaces as well as long-term stability of the conjugation scheme. Fluorescence and AFM results upon conjugation with varying protein concentrations indicate controllable protein conjugation. Examination of protein-particle conjugation kinetics shows multiple reaction regimes; rapid initial, intermediate, and steady final stage. Lastly, we demonstrate antibody conjugation with the particles and selective and rapid target protein capture with antibody-conjugated particles. Combined, these results illustrate a facile fabrication-conjugation scheme for robust protein-conjugated platforms that can be readily enlisted in various protein sensing applications.
Langmuir | 2014
Sukwon Jung; Hyunmin Yi
We demonstrate significantly enhanced protein conjugation and target protein capture capacity by exploiting tobacco mosaic virus (TMV) templates assembled with hydrogel microparticles. Protein conjugation results with a red fluorescent protein R-Phycoerythrin (R-PE) show significantly enhanced protein conjugation capacity of TMV-assembled particles (TMV-particles) compared to planar substrates or hydrogel microparticles. In-depth examination of protein conjugation kinetics via tetrazine (Tz)-trans-cyclooctene (TCO) cycloaddition and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction demonstrates that TMV-particles provide a less hindered environment for protein conjugation. Target protein capture results using an anti-R-PE antibody (R-Ab)-R-PE pair also show substantially improved capture capacity of R-Ab conjugated TMV-particles over R-Ab conjugated hydrogel microparticles. We further demonstrate readily controlled protein and antibody conjugation capacity by simply varying TMV concentrations, which show negligible negative impact of densely assembled TMVs on protein conjugation and capture capacity. Combined, these results illustrate a facile postfabrication protein conjugation approach with TMV templates assembled onto hydrogel microparticles for improved and controlled protein conjugation and sensing platforms. We anticipate that our approach can be readily applied to various protein sensing applications.
Chemistry of Materials | 2015
Sukwon Jung; Hyunmin Yi
Hydrogel microparticles with controlled structures have drawn attention in various biomedical applications, yet it remains challenging to fabricate such microparticles in a simple manner. We demonstrate facile fabrication of chemically functional and monodisperse hydrogel microspheres with controlled macroporous structures. Specifically, highly uniform poly(ethylene glycol)-based microspheres containing an aminopolysaccharide chitosan are fabricated in a simple micromolding technique utilizing surface tension-induced droplet formation followed by photoinduced polymerization. The as-prepared microspheres show macroporous and/or intriguing core–shell structures by polymerization-induced phase separation. Fluorescent labeling studies indicate stable incorporation of chitosan with retained chemical reactivity. The utility of the controlled macroporous structures in programmable biomacromolecular assembly is thoroughly examined with conjugation of model biomolecules via click chemistries.
Langmuir | 2016
Eric Y. Liu; Sukwon Jung; Hyunmin Yi
We demonstrate a robust and tunable micromolding method to fabricate chemically functional poly(acrylamide-co-acrylic acid) (p(AAm-co-AA)) hydrogel microspheres with uniform dimensions and controlled porous network structures for rapid biomacromolecular conjugation. Specifically, p(AAm-co-AA) microspheres with abundant carboxylate functional groups are fabricated via surface-tension-induced droplet formation in patterned poly(dimethylsiloxane) molds and photoinduced radical polymerization. To demonstrate the chemical functionality, we enlisted rapid EDC/NHS (1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS)) chemistry for fluorescent labeling of the microspheres with small-molecule dye fluorescein glycine amide. Epifluorescence imaging results illustrate the uniform incorporation of carboxylate groups within the microspheres and rapid conjugation kinetics. Furthermore, protein conjugation results using red fluorescent protein R-phycoerythrin demonstrate the highly porous nature of the microspheres as well as the utility of the microspheres and the EDC/NHS scheme for facile biomacromolecular conjugation. Combined, these results illustrate the significant potential for our fabrication-conjugation strategy in the development of biofunctionalized polymeric hydrogel microparticles toward rapid biosensing, bioprocess monitoring, and biodiagnostics.
Biomacromolecules | 2016
Sukwon Jung; John H. Abel; Jesse L. Starger; Hyunmin Yi
We report a robust method to manufacture polyacrylamide-based functional hydrogel microspheres with readily tunable macroporous structures by utilizing a simple micromolding-based technique. Specifically, surface tension-induced droplet formation of aqueous solutions of chitosan and acrylamide in 2D-shaped micromolds followed by photoinduced polymerization leads to monodisperse microspheres. Pore sizes of the microspheres can be readily tuned by simple addition of inert long-chain poly(ethylene glycol) porogen at low content in the prepolymer solution. The as-prepared chitosan-polyacrylamide microspheres exhibit chemical functionality through chitosans primary amines, rapid protein conjugation with selective tetrazine-trans-cyclooctene reaction, and nonfouling property. Combined with the potential to create anisotropic network structures, we envision that our simple fabrication-conjugation method would offer a potent route to manufacture a variety of biofunctionalized hydrogel microentities.
Korean Journal of Chemical Engineering | 2015
Sukwon Jung; Hyunmin Yi
Controlled manufacturing of polymeric hydrogel microparticles is crucial, yet challenging, for rapid and sensitive detection of biomacromolecules in biodiagnostics and biosensing applications. Our approach is an integrated fabrication-conjugation strategy utilizing a simple and robust micromolding technique and biofabrication with a potent aminopolysaccharide chitosan as an efficient conjugation handle for high-yield bioorthogonal conjugation reactions. We present a concise overview of our recent findings in the controlled fabrication of shape-encoded or core-shell structured microparticles consisting of poly(ethylene glycol) (PEG) and short single-stranded (ss) DNA or chitosan, and their utility in the covalent conjugation and nucleic acid hybridization-based assembly of target ssDNAs, proteins and viral nanotemplates. Particularly, two novel routes to achieve substantially improved protein conjugation capacity and kinetics are presented from our recent reports: tobacco mosaic virus (TMV) as a high capacity nanotubular template and polymerization-induced phase separation (PIPS) of pre-polymer droplets for controlled core-shell structure formation. We envision that our fabrication-conjugation approaches reported here, combined with our current and future endeavors in improved fabrication and design of controlled structures with chemical functionalities, should permit a range of manufacturing strategies for advanced functional microscale materials and platforms in a wide array of applications.
Langmuir | 2016
Eunae Kang; Sukwon Jung; John H. Abel; Allison Pine; Hyunmin Yi
Polymeric hydrogel microparticle-based suspension arrays with shape-based encoding offer powerful alternatives to planar and bead-based arrays toward high throughput biosensing and medical diagnostics. We report a simple and robust micromolding technique for polyacrylamide- (PAAm-) based biopolymeric-synthetic hybrid microparticles with controlled 2D shapes containing a potent aminopolysaccharide chitosan as an efficient conjugation handle uniformly incorporated in PAAm matrix. A postfabrication conjugation approach utilizing amine-reactive chemistries on the chitosan shows stable incorporation and retained chemical reactivity of chitosan, readily tunable macroporous structures via simple addition of low content long-chain PEG porogens for improved conjugation capacity and kinetics, and one-pot biomacromolecular assembly via bioorthogonal click reactions with minimal nonspecific binding. We believe that the integrated fabrication-conjugation approach reported here could offer promising routes to programmable manufacture of hydrogel microparticle-based biomacromolecular conjugation and biofunctionalization platforms for a large range of applications.
Biotechnology Journal | 2016
Sukwon Jung; Chang-Hyung Choi; Chang-Soo Lee; Hyunmin Yi
Functionalized polymeric microparticles possess significant potential for controlled drug delivery and biosensing applications, yet current fabrication techniques face challenges in simple and scalable fabrication and biofunctionalization. For programmable manufacture of biofunctional microparticles in a simple manner, we have developed robust micromolding methods combined with biopolymeric conjugation handles and bioorthogonal click reactions. In this focused minireview, we present detailed methods for our integrated approaches for fabrication of microparticles with controlled 2D and 3D shapes and dimensions toward controlled release, and for biomacromolecular conjugation via strain promoted alkyne‐azide cycloaddition (SPAAC) and tetrazine‐trans‐cyclooctene (Tz‐TCO) ligation reactions utilizing a potent aminopolysaccharide chitosan as an efficient conjugation handle. We believe that the fabrication‐conjugation methods reported here from a range of our recent reports illustrate the simple, robust and readily reproducible nature of our approaches to creating multifaceted microparticles in a programmable, cost‐efficient and scalable manner toward a wide range of medical and biotechnological application areas.
Biotechnology and Bioprocess Engineering | 2015
Yader Duenas; Jae‐Hun Lee; Sukwon Jung; Hyunmin Yi
Reliable RNA integrity assay is important for a wide range of applications in genomics and diagnostics, yet the existing technologies have certain limitations such as large amount of sample required, high cost of equipment and/or long turnaround times. We report a simple assay method to analyze bacterial ribosomal RNA (rRNA) from complex total RNA samples utilizing shape-encoded and single-stranded DNA-conjugated hydrogel microparticle suspension arrays with no need for target amplification and under standard fluorescence imaging conditions. We show that our simple microparticle-based sensing scheme is reliable, sequence-specific and presents a responsive binding behavior to target RNA concentrations. Moreover, the relative stability of 16S and 23S rRNA can be assessed in a simple shape encoding-based multiplexed format. Combined, these findings represent a significant step toward cheap, fast, simple, and reliable assays for the analysis of rRNA and general RNA integrity.