Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sukwoo Choi is active.

Publication


Featured researches published by Sukwoo Choi.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production

Gi Hoon Son; Sooyoung Chung; Han Kyoung Choe; Hee-Dae Kim; Sun-Mee Baik; Han-Kyu Lee; Han-Woong Lee; Sukwoo Choi; Woong Sun; Hyun Kim; Se-Hyung Cho; Kun Ho Lee; Kyungjin Kim

Glucocorticoid (GC) is an adrenal steroid with diverse physiological effects. It undergoes a robust daily oscillation, which has been thought to be driven by the master circadian clock in the suprachiasmatic nucleus of the hypothalamus via the hypothalamus–pituitary–adrenal axis. However, we show that the adrenal gland has its own clock and that the peripheral clockwork is tightly linked to steroidogenesis by the steroidogenic acute regulatory protein. Examination of mice with adrenal-specific knockdown of the canonical clock protein BMAL1 reveals that the adrenal clock machinery is required for circadian GC production. Furthermore, behavioral rhythmicity is drastically affected in these animals, together with altered expression of Period1, but not Period2, in several peripheral organs. We conclude that the adrenal peripheral clock plays an essential role in harmonizing the mammalian circadian timing system by generating a robust circadian GC rhythm.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Amygdala depotentiation and fear extinction

Jeongyeon Kim; Sukwon Lee; Kyungjoon Park; Ingie Hong; Beomjong Song; Gi Hoon Son; Heewoo Park; Woon Ryoung Kim; Eun-Jin Park; Han Kyung Choe; Hyun Kim; Chang-Joong Lee; Woong Sun; Kyungjin Kim; Ki Soon Shin; Sukwoo Choi

Auditory fear memory is thought to be maintained by fear conditioning-induced potentiation of synaptic efficacy, which involves enhanced expression of surface AMPA receptor (AMPAR) at excitatory synapses in the lateral amygdala (LA). Depotentiation, reversal of conditioning-induced potentiation, has been proposed as a cellular mechanism for fear extinction; however, a direct link between depotentiation and extinction has not yet been tested. To address this issue, we applied both ex vivo and in vivo approaches to rats in which fear memory had been consolidated. A unique form of depotentiation reversed conditioning-induced potentiation at thalamic input synapses onto the LA (T-LA synapses) ex vivo. Extinction returned the enhanced T-LA synaptic efficacy observed in conditioned rats to baseline and occluded the depotentiation. Consistently, extinction reversed conditioning-induced enhancement of surface expression of AMPAR subunits in LA synaptosomal preparations. A GluR2-derived peptide that blocks regulated AMPAR endocytosis inhibited depotentiation, and microinjection of a cell-permeable form of the peptide into the LA attenuated extinction. Our results are consistent with the use of depotentiation to weaken potentiated synaptic inputs onto the LA during extinction and provide strong evidence that AMPAR removal at excitatory synapses in the LA underlies extinction.


Neuron | 2006

Frequency-Dependent Kinetics and Prevalence of Kiss-and-Run and Reuse at Hippocampal Synapses Studied with Novel Quenching Methods

Nobutoshi Harata; Sukwoo Choi; Jason L. Pyle; Alexander M. Aravanis; Richard W. Tsien

The kinetics of exo-endocytotic recycling could restrict information transfer at central synapses if neurotransmission were entirely reliant on classical full-collapse fusion. Nonclassical fusion retrieval by kiss-and-run would be kinetically advantageous but remains controversial. We used a hydrophilic quencher, bromophenol blue (BPB), to help detect nonclassical events. Upon stimulation, extracellular BPB entered synaptic vesicles and quenched FM1-43 fluorescence, indicating retention of FM dye beyond first fusion. BPB also quenched fluorescence of VAMP (synaptobrevin-2)-EGFP, thus indicating the timing of first fusion of vesicles in the total recycling pool. Comparison with FM dye destaining revealed that kiss-and-run strongly prevailed over full-collapse fusion at low frequency, giving way to a near-even balance at high frequency. Quickening of kiss-and-run vesicle reuse was also observed at higher frequency in the average single vesicle fluorescence response. Kiss-and-run and reuse could enable hippocampal nerve terminals to conserve scarce vesicular resources when responding to widely varying input patterns.


The Journal of Neuroscience | 2006

Maternal Stress Produces Learning Deficits Associated with Impairment of NMDA Receptor-Mediated Synaptic Plasticity

Gi Hoon Son; Dongho Geum; Sooyoung Chung; Eun Joo Kim; Jihoon Jo; Changmee Kim; Kun Ho Lee; Hyun Kim; Sukwoo Choi; Hyun Taek Kim; Chang-Joong Lee; Kyungjin Kim

Stress in adulthood can have a profound effect on physiology and behavior, but the extent to which prolonged maternal stress affects the brain function of offspring when they are adult remains primarily unknown. In the present work, chronic immobilization stress to pregnant mice affected fetal growth and development. When pups born from stressed mice were reared to adulthood in an environment identical to that of nonstressed controls, several physiological parameters were essentially unaltered. However, spatial learning and memory was significantly impaired in the maternally stressed offspring in adulthood. Furthermore, electrophysiological examination revealed a significant reduction in NMDA receptor-mediated long-term potentiation in the CA1 area of hippocampal slices. Subsequent biochemical analysis demonstrated a substantial decrease in NR1 and NR2B subunits of the NMDA receptor in synapses of the hippocampus, and the interaction between these two subunits appeared to be reduced. These results suggest that prolonged maternal stress leads to long-lasting malfunction of the hippocampus, which extends to and is manifested in adulthood.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Molecular basis of R-type calcium channels in central amygdala neurons of the mouse

Seung-Chan Lee; Sukwoo Choi; Tae Hoon Lee; Hyung-Lae Kim; Hemin Chin; Hee-Sup Shin

R-type Ca2+ channels play a critical role in coupling excitability to dendritic Ca2+ influx and neuronal secretion. Unlike other types of voltage-sensitive Ca2+ channels (L, N, P/Q, and T type), the molecular basis for the R-type Ca2+ channel is still unclear, thereby limiting further detailed analyses of R-type Ca2+ channel physiology. The prevailing hypothesis is that α1E (CaV2.3) gene encodes for R-type Ca2+ channels, but the dearth of critical evidence has rendered this hypothesis controversial. Here we generated α1E-deficient mice (α1E−/−) and examined the status of voltage-sensitive Ca2+ currents in central amygdala (CeA) neurons that exhibit abundant α1E expression and R-type Ca2+ currents. The majority of R-type currents in CeA neurons were eliminated in α1E−/− mice whereas other Ca2+ channel types were unaffected. These data clearly indicate that the expression of α1E gene underlies R-type Ca2+ channels in CeA neurons. Furthermore, the α1E−/− mice exhibited signs of enhanced fear as evidenced by their vigorous escaping behavior and aversion to open-field conditions. These latter findings imply a possible role of α1E-based R-type Ca2+ currents in amygdala physiology associated with fear.


Proceedings of the National Academy of Sciences of the United States of America | 2013

AMPA receptor exchange underlies transient memory destabilization on retrieval

Ingie Hong; Jeong Yeon Kim; Jihye Kim; Sukwon Lee; Hyoung-Gon Ko; Karim Nader; Bong-Kiun Kaang; Richard W. Tsien; Sukwoo Choi

A consolidated memory can be transiently destabilized by memory retrieval, after which memories are reconsolidated within a few hours; however, the molecular substrates underlying this destabilization process remain essentially unknown. Here we show that at lateral amygdala synapses, fear memory consolidation correlates with increased surface expression of calcium-impermeable AMPA receptors (CI-AMPARs), which are known to be more stable at the synapse, whereas memory retrieval induces an abrupt exchange of CI-AMPARs to calcium-permeable AMPARs (CP-AMPARs), which are known to be less stable at the synapse. We found that blockade of either CI-AMPAR endocytosis or NMDA receptor activity during memory retrieval, both of which blocked the exchange to CP-AMPARs, prevented memory destabilization, indicating that this transient exchange of AMPARs may underlie the transformation of a stable memory into an unstable memory. These newly inserted CP-AMPARs gradually exchanged back to CI-AMPARs within hours, which coincided with the course of reconsolidation. Furthermore, blocking the activity of these newly inserted CP-AMPARs after retrieval impaired reconsolidation, suggesting that they serve as synaptic “tags” that support synapse-specific reconsolidation. Taken together, our results reveal unexpected physiological roles of CI-AMPARs and CP-AMPARs in transforming a consolidated memory into an unstable memory and subsequently guiding reconsolidation.


Journal of Clinical Investigation | 2013

FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer’s disease

Tae In Kam; Sungmin Song; Youngdae Gwon; Hyejin Park; Ji Jing Yan; Isak Im; Ji Woo Choi; Tae-Yong Choi; Jeongyeon Kim; Dong Keun Song; Toshiyuki Takai; Yong Chul Kim; Key Sun Kim; Se-Young Choi; Sukwoo Choi; William L. Klein; Junying Yuan; Yong-Keun Jung

Amyloid-β (Aβ) induces neuronal loss and cognitive deficits and is believed to be a prominent cause of Alzheimers disease (AD); however, the cellular pathology of the disease is not fully understood. Here, we report that IgG Fcγ receptor II-b (FcγRIIb) mediates Aβ neurotoxicity and neurodegeneration. We found that FcγRIIb is significantly upregulated in the hippocampus of AD brains and neuronal cells exposed to synthetic Aβ. Neuronal FcγRIIb activated ER stress and caspase-12, and Fcgr2b KO primary neurons were resistant to synthetic Aβ-induced cell death in vitro. Fcgr2b deficiency ameliorated Aβ-induced inhibition of long-term potentiation and inhibited the reduction of synaptic density by naturally secreted Aβ. Moreover, genetic depletion of Fcgr2b rescued memory impairments in an AD mouse model. To determine the mechanism of action of FcγRIIb in Aβ neurotoxicity, we demonstrated that soluble Aβ oligomers interact with FcγRIIb in vitro and in AD brains, and that inhibition of their interaction blocks synthetic Aβ neurotoxicity. We conclude that FcγRIIb has an aberrant, but essential, role in Aβ-mediated neuronal dysfunction.


The Journal of Neuroscience | 2010

Reactivation of Fear Memory Renders Consolidated Amygdala Synapses Labile

Jeong Yeon Kim; Beomjong Song; Ingie Hong; Jihye Kim; Junuk Lee; Sungmo Park; Jae Yong Eom; C. Justin Lee; Sukwon Lee; Sukwoo Choi

It is believed that memory reactivation transiently renders consolidated memory labile and that this labile or deconsolidated memory is reconsolidated in a protein synthesis-dependent manner. The synaptic correlate of memory deconsolidation upon reactivation, however, has not been fully characterized. Here, we show that 3,5-dihydroxyphenylglycine (DHPG), an agonist for group I metabotropic glutamate receptors (mGluRI), induces synaptic depotentiation only at thalamic input synapses onto the lateral amygdala (T–LA synapses) where synaptic potentiation is consolidated, but not at synapses where synaptic potentiation is not consolidated. Using this mGluRI-induced synaptic depotentiation (mGluRI-depotentiation) as a marker of consolidated synapses, we found that mGluRI-depotentiation correlated well with the state of memory deconsolidation and reconsolidation in a predictable manner. DHPG failed to induce mGluRI-depotentiation in slices prepared immediately after reactivation when the reactivated memory was deconsolidated. DHPG induced mGluRI-depotentiation 1 h after reactivation when the reactivated memory was reconsolidated, but it failed to do so when reconsolidation was blocked by a protein synthesis inhibitor. To test the memory-specificity of mGluRI-depotentiation, conditioned fear was acquired twice using two discriminative tones (2.8 and 20 kHz). Under this condition, mGluRI-depotentiation was fully impaired in slices prepared immediately after reactivation with both tones, whereas mGluRI-depotentiation was partially impaired immediately after reactivation with the 20 kHz tone. Consistently, microinjection of DHPG into the LA 1 h after reactivation reduced fear memory retention, whereas DHPG injection immediately after reactivation failed to do so. Our findings suggest that, upon memory reactivation, consolidated T–LA synapses enter a temporary labile state, displaying insensitivity to mGluRI-depotentiation.


European Journal of Neuroscience | 2009

Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala

Ingie Hong; Beomjong Song; Sukwon Lee; Jihye Kim; Jeongyeon Kim; Sukwoo Choi

The amygdala is known to be a critical storage site of conditioned fear memory. Among the two major pathways to the lateral amygdala (LA), the cortical pathway is known to display a presynaptic long‐term potentiation which is occluded with fear conditioning. Here we show that fear extinction results in a net depression of conditioning‐induced potentiation at cortical input synapses onto the LA (C‐LA synapses). Fear conditioning induced a significant potentiation of excitatory postsynaptic currents at C‐LA synapses compared with naïve and unpaired controls, whereas extinction apparently reversed this potentiation. Paired‐pulse low‐frequency stimulation (pp‐LFS) induced synaptic depression in the C‐LA pathway of fear‐conditioned rats, but not in naïve or unpaired controls, indicating that the pp‐LFS‐induced depression is specific to associative learning‐induced changes (pp‐LFS‐induced depotentiationex vivo). Importantly, extinction occluded pp‐LFS‐induced depotentiationex vivo, suggesting that extinction shares some mechanisms with the depotentiation. pp‐LFS‐induced depotentiationex vivo required NMDA receptor (NMDAR) activity, consistent with a previous finding that blockade of amygdala NMDARs impaired fear extinction. In addition, pp‐LFS‐induced depotentiationex vivo required activity of group II metabotropic glutamate receptors (mGluRs), known to be present at presynaptic terminals, but not AMPAR internalization, consistent with a presynaptic mechanism for pp‐LFS‐induced depotentiationex vivo. This result is in contrast with another form of ex vivo depotentiation in the thalamic pathway that requires both group I mGluR activity and AMPAR internalization. We thus suggest that extinction of conditioned fear involves a distinct form of depotentiation at C‐LA synapses, which depends upon both NMDARs and group II mGluRs.


European Journal of Neuroscience | 2009

The maintenance of specific aspects of neuronal function and behavior is dependent on programmed cell death of adult‐generated neurons in the dentate gyrus

Woon Ryoung Kim; Ok Hee Park; Sukwoo Choi; Se-Young Choi; Soon Kwon Park; Kea Joo Lee; Im Joo Rhyu; Hyun Kim; Yeon Kyung Lee; Hyun Taek Kim; Ronald W. Oppenheim; Woong Sun

A considerable number of new neurons are generated daily in the dentate gyrus (DG) of the adult hippocampus, but only a subset of these survive, as many adult‐generated neurons undergo programmed cell death (PCD). However, the significance of PCD in the adult brain for the functionality of DG circuits is not known. Here, we examined the electrophysiological and behavioral characteristics of Bax‐knockout (Bax‐KO) mice in which PCD of post‐mitotic neurons is prevented. The continuous increase in DG cell numbers in Bax‐KO mice resulted in the readjustment of afferent and efferent synaptic connections, represented by age‐dependent reductions in the dendritic arborization of DG neurons and in the synaptic contact ratio of mossy fibers with CA3 dendritic spines. These neuroanatomical changes were associated with reductions in synaptic transmission and reduced performance in a contextual fear memory task in 6‐month‐old Bax‐KO mice. These results suggest that the elimination of excess DG neurons via Bax‐dependent PCD in the adult brain is required for the normal organization and function of the hippocampus.

Collaboration


Dive into the Sukwoo Choi's collaboration.

Top Co-Authors

Avatar

Jeong Yeon Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyungjin Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sooyoung Chung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Justin Lee

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge