Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sukyeong Lee is active.

Publication


Featured researches published by Sukyeong Lee.


Cell | 2004

Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB

Jimena Weibezahn; Peter Tessarz; Christian Schlieker; Regina Zahn; Zeljka Maglica; Sukyeong Lee; Hanswalter Zentgraf; Eilika Weber-Ban; David A. Dougan; Francis T.F. Tsai; Axel Mogk; Bernd Bukau

Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We engineered a ClpB variant, BAP, which associates with the ClpP peptidase and thereby is converted into a degrading disaggregase. BAP translocates substrates through its central pore directly into ClpP for degradation. ClpB-dependent translocation is demonstrated to be an integral part of the disaggregation mechanism. Protein disaggregation by the BAP/ClpP complex remains dependent on DnaK, defining a role for DnaK at early stages of the disaggregation reaction. The activity switch of BAP to a degrading disaggregase does not support thermotolerance development, demonstrating that cell survival during severe thermal stress requires reactivation of aggregated proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2010

CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation

Sukyeong Lee; Bernhard Sielaff; Jungsoon Lee; Francis T.F. Tsai

Hsp104 is a ring-forming AAA+ machine that recognizes both aggregated proteins and prion-fibrils as substrates and, together with the Hsp70 system, remodels substrates in an ATP-dependent manner. Whereas the ability to disaggregate proteins is dependent on the Hsp104 M-domain, the location of the M-domain is controversial and its exact function remains unknown. Here we present cryoEM structures of two Hsp104 variants in both crosslinked and noncrosslinked form, in addition to the structure of a functional Hsp104 chimera harboring T4 lysozyme within the M-domain helix L2. Unexpectedly, we found that our Hsp104 chimera has gained function and can solubilize heat-aggregated β-galactosidase (β-gal) in the absence of the Hsp70 system. Our fitted structures confirm that the subunit arrangement of Hsp104 is similar to other AAA+ machines, and place the M-domains on the Hsp104 exterior, where they can potentially interact with large, aggregated proteins.


Molecular Cell | 2009

An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteases.

Steffen Augustin; Florian Gerdes; Sukyeong Lee; Francis T.F. Tsai; Thomas Langer; Takashi Tatsuta

Ring-shaped AAA+ ATPases control a variety of cellular processes by substrate unfolding and remodeling of macromolecular structures. However, how ATP hydrolysis within AAA+ rings is regulated and coupled to mechanical work is poorly understood. Here we demonstrate coordinated ATP hydrolysis within m-AAA protease ring complexes, conserved AAA+ machines in the inner membrane of mitochondria. ATP binding to one AAA subunit inhibits ATP hydrolysis by the neighboring subunit, leading to coordinated rather than stochastic ATP hydrolysis within the AAA ring. Unbiased genetic screens define an intersubunit signaling pathway involving conserved AAA motifs and reveal an intimate coupling of ATPase activities to central AAA pore loops. Coordinated ATP hydrolysis between adjacent subunits is required for membrane dislocation of substrates, but not for substrate processing. These findings provide insight into how AAA+ proteins convert energy derived from ATP hydrolysis into mechanical work.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor

Jungsoon Lee; Amadeo B. Biter; Bernhard Sielaff; Sukyeong Lee; Francis T.F. Tsai

Heat shock protein (Hsp) 104 is a ring-forming, protein-remodeling machine that harnesses the energy of ATP binding and hydrolysis to drive protein disaggregation. Although Hsp104 is an active ATPase, the recovery of functional protein requires the species-specific cooperation of the Hsp70 system. However, like Hsp104, Hsp70 is an active ATPase, which recognizes aggregated and aggregation-prone proteins, making it difficult to differentiate the mechanistic roles of Hsp104 and Hsp70 during protein disaggregation. Mapping the Hsp70-binding sites in yeast Hsp104 using peptide array technology and photo–cross-linking revealed a striking conservation of the primary Hsp70-binding motifs on the Hsp104 middle-domain across species, despite lack of sequence identity. Remarkably, inserting a Strep-Tactin binding motif at the spatially conserved Hsp70-binding site elicits the Hsp104 protein disaggregating activity that now depends on Strep-Tactin but no longer requires Hsp70/40. Consistent with a Strep-Tactin–dependent activation step, we found that full-length Hsp70 on its own could activate the Hsp104 hexamer by promoting intersubunit coordination, suggesting that Hsp70 is an activator of the Hsp104 motor.


Journal of Biological Chemistry | 2011

Electron Cryomicroscopy Structure of a Membrane-anchored Mitochondrial AAA Protease

Sukyeong Lee; Steffen Augustin; Takashi Tatsuta; Florian Gerdes; Thomas Langer; Francis T.F. Tsai

FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structural basis for intersubunit signaling in a protein disaggregating machine.

Amadeo B. Biter; Sukyeong Lee; Nuri Sung; Francis T.F. Tsai

ClpB is a ring-forming, ATP-dependent protein disaggregase that cooperates with the cognate Hsp70 system to recover functional protein from aggregates. How ClpB harnesses the energy of ATP binding and hydrolysis to facilitate the mechanical unfolding of previously aggregated, stress-damaged proteins remains unclear. Here, we present crystal structures of the ClpB D2 domain in the nucleotide-bound and -free states, and the fitted cryoEM structure of the D2 hexamer ring, which provide a structural understanding of the ATP power stroke that drives protein translocation through the ClpB hexamer. We demonstrate that the conformation of the substrate-translocating pore loop is coupled to the nucleotide state of the cis subunit, which is transmitted to the neighboring subunit via a conserved but structurally distinct intersubunit-signaling pathway common to diverse AAA+ machines. Furthermore, we found that an engineered, disulfide cross-linked ClpB hexamer is fully functional biochemically, suggesting that ClpB deoligomerization is not required for protein disaggregation.


Journal of Structural Biology | 2012

Functional analysis of conserved cis- and trans-elements in the Hsp104 protein disaggregating machine.

Amadeo B. Biter; Jungsoon Lee; Nuri Sung; Francis T.F. Tsai; Sukyeong Lee

Hsp104 is a double ring-forming AAA+ ATPase, which harnesses the energy of ATP binding and hydrolysis to rescue proteins from a previously aggregated state. Like other AAA+ machines, Hsp104 features conserved cis- and trans-acting elements, which are hallmarks of AAA+ members and are essential to Hsp104 function. Despite these similarities, it was recently proposed that Hsp104 is an atypical AAA+ ATPase, which markedly differs in 3D structure from other AAA+ machines. Consequently, it was proposed that arginines found in the non-conserved M-domain, but not the predicted Arg-fingers, serve the role of the critical trans-acting element in Hsp104. While the structural discrepancy has been resolved, the role of the Arg-finger residues in Hsp104 remains controversial. Here, we exploited the ability of Hsp104 variants featuring mutations in one ring to retain ATPase and chaperone activities, to elucidate the functional role of the predicted Arg-finger residues. We found that the evolutionarily conserved Arg-fingers are absolutely essential for ATP hydrolysis but are dispensable for hexamer assembly in Hsp104. On the other hand, M-domain arginines are not strictly required for ATP hydrolysis and affect the ATPase and chaperone activities in a complex manner. Our results confirm that Hsp104 is not an atypical AAA+ ATPase, and uses conserved structural elements common to diverse AAA+ machines to drive the mechanical unfolding of aggregated proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate.

Nuri Sung; Jungsoon Lee; Changsoo Chang; Andrzej Joachimiak; Sukyeong Lee; Francis T.F. Tsai

Significance Mitochondrial heat-shock protein of 90 kDa (Hsp90) (TRAP1) promotes cell survival and is essential for neoplastic growth. Exploiting human TRAP1 for drug development requires detailed structural and mechanistic understanding. Whereas TRAP1 adopts different conformations associated with distinct nucleotide states, how the TRAP1 dimer senses the bound nucleotide and signals this information to the neighboring subunit remains unknown. We show that unliganded TRAP1 forms a previously unobserved coiled-coil dimer and is found in an autoinhibited state. ATP binding in cis displaces the ATP lid that signals the nucleotide status to the trans subunit. Our findings suggest that human TRAP1 is a ligand-activated molecular chaperone, which couples ATP binding to local changes in structure facilitating dimer closure needed for protein folding. Heat-shock protein of 90 kDa (Hsp90) is an essential molecular chaperone that adopts different 3D structures associated with distinct nucleotide states: a wide-open, V-shaped dimer in the apo state and a twisted, N-terminally closed dimer with ATP. Although the N domain is known to mediate ATP binding, how Hsp90 senses the bound nucleotide and facilitates dimer closure remains unclear. Here we present atomic structures of human mitochondrial Hsp90N (TRAP1N) and a composite model of intact TRAP1 revealing a previously unobserved coiled-coil dimer conformation that may precede dimer closure and is conserved in intact TRAP1 in solution. Our structure suggests that TRAP1 normally exists in an autoinhibited state with the ATP lid bound to the nucleotide-binding pocket. ATP binding displaces the ATP lid that signals the cis-bound ATP status to the neighboring subunit in a highly cooperative manner compatible with the coiled-coil intermediate state. We propose that TRAP1 is a ligand-activated molecular chaperone, which couples ATP binding to dramatic changes in local structure required for protein folding.


F1000Research | 2015

Molecular chaperones: guardians of the proteome in normal and disease states.

Wilson Jeng; Sukyeong Lee; Nuri Sung; Jungsoon Lee; Francis T.F. Tsai

Proteins must adopt a defined three-dimensional structure in order to gain functional activity, or must they? An ever-increasing number of intrinsically disordered proteins and amyloid-forming polypeptides challenge this dogma. While molecular chaperones and proteases are traditionally associated with protein quality control inside the cell, it is now apparent that molecular chaperones not only promote protein folding in the “forward” direction by facilitating folding and preventing misfolding and aggregation, but also facilitate protein unfolding and even disaggregation resulting in the recovery of functional protein from aggregates. Here, we review our current understanding of ATP-dependent molecular chaperones that harness the energy of ATP binding and hydrolysis to fuel their chaperone functions. An emerging theme is that most of these chaperones do not work alone, but instead function together with other chaperone systems to maintain the proteome. Hence, molecular chaperones are the major component of the proteostasis network that guards and protects the proteome from damage. Furthermore, while a decline of this network is detrimental to cell and organismal health, a controlled perturbation of the proteostasis network may offer new therapeutic avenues against human diseases.


Scientific Reports | 2017

Overlapping and Specific Functions of the Hsp104 N Domain Define Its Role in Protein Disaggregation

Jungsoon Lee; Nuri Sung; Jonathan Mercado; Corey F. Hryc; Changsoo Chang; Sukyeong Lee; Francis T.F. Tsai

Hsp104 is a ring-forming protein disaggregase that rescues stress-damaged proteins from an aggregated state. To facilitate protein disaggregation, Hsp104 cooperates with Hsp70 and Hsp40 chaperones (Hsp70/40) to form a bi-chaperone system. How Hsp104 recognizes its substrates, particularly the importance of the N domain, remains poorly understood and multiple, seemingly conflicting mechanisms have been proposed. Although the N domain is dispensable for protein disaggregation, it is sensitive to point mutations that abolish the function of the bacterial Hsp104 homolog in vitro, and is essential for curing yeast prions by Hsp104 overexpression in vivo. Here, we present the crystal structure of an N-terminal fragment of Saccharomyces cerevisiae Hsp104 with the N domain of one molecule bound to the C-terminal helix of the neighboring D1 domain. Consistent with mimicking substrate interaction, mutating the putative substrate-binding site in a constitutively active Hsp104 variant impairs the recovery of functional protein from aggregates. We find that the observed substrate-binding defect can be rescued by Hsp70/40 chaperones, providing a molecular explanation as to why the N domain is dispensable for protein disaggregation when Hsp70/40 is present, yet essential for the dissolution of Hsp104-specific substrates, such as yeast prions, which likely depends on a direct N domain interaction.

Collaboration


Dive into the Sukyeong Lee's collaboration.

Top Co-Authors

Avatar

Francis T.F. Tsai

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jungsoon Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nuri Sung

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Changsoo Chang

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amadeo B. Biter

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Sielaff

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge