Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sulaiman Ab Ghani is active.

Publication


Featured researches published by Sulaiman Ab Ghani.


Analytica Chimica Acta | 2013

Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode

Hanieh Ghadimi; Ramin M.A.Tehrani; Abdussalam Salhin Mohamed Ali; Norita Mohamed; Sulaiman Ab Ghani

A novel glassy carbon electrode (GCE) modified with a composite film of poly (4-vinylpyridine) (P4VP) and multiwalled carbon nanotubes (P4VP/MWCNT GCE) was used for the voltammetric determination of paracetamol (PCT). This novel electrode displayed a combined effect of P4VP and MWCNT on the electro-oxidation of PCT in a solution of phosphate buffer at pH 7. Hence, conducting properties of P4VP along with the remarkable physical properties of MWCNTs might have combined effects in enhancing the kinetics of PCT oxidation. The P4VP/MWCNT GCE has also demonstrated excellent electrochemical activity toward PCT oxidation compared to that with bare GCE and MWCNT GCE. The anodic peak currents of PCT on the P4VP/MWCNT GCE were about 300 fold higher than that of the non-modified electrodes. By applying differential pulse voltammetry technique under optimized experimental conditions, a good linear ratio of oxidation peak currents and concentrations of PCT over the range of 0.02-450 μM with a limit of detection of 1.69 nM were achieved. This novel electrode was stable for more than 60 days and reproducible responses were obtained at 99% of the initial current of PCT without any influence of physiologically common interferences such as ascorbic acid and uric acid. The application of this electrode to determine PCT in tablets and urine samples was proposed.


Biosensors and Bioelectronics | 2012

MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor

Ramin M.A.Tehrani; Sulaiman Ab Ghani

A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme.


Biosensors and Bioelectronics | 2010

Development of an implantable D-serine biosensor for in vivo monitoring using mammalian D-amino acid oxidase on a poly (o-phenylenediamine) and Nafion-modified platinum-iridium disk electrode

Zainiharyati M. Zain; John P. Lowry; Kenneth W. Pierce; Mark Tricklebank; Aidiahmad Dewa; Sulaiman Ab Ghani

D-serine has been implicated as a brain messenger, promoting not only neuronal signalling but also synaptic plasticity. Thus, a sensitive tool for D-serine monitoring in brain is required to understand the mechanisms of D-serine release from glia cells. A biosensor for direct fixed potential amperometric monitoring of D-serine incorporating mammalian D-amino acid oxidase (DAAO) immobilized on a Nafion coated poly-ortho-phenylenediamine (PPD) modified Pt-Ir disk electrode was therefore developed. The combined layers of PPD and Nafion enhanced the enzyme activity and biosensor efficiency by approximately 2-fold compared with each individual layer. A steady state response time (t(90%)) of 0.7+/-0.1s (n=8) and limit of detection 20+/-1 nM (n=8) were obtained. Cylindrical geometry showed lower sensitivity compared to disk geometry (61+/-7 microA cm(-2) mM(-1), (n=4), R(2)=0.999). Interference by ascorbic acid (AA), the main interference species in the central nervous system and other neurochemical electroactive molecules was negligible. Implantation of the electrode and microinjection of D-serine into rat brain striatal extracellular fluid demonstrated that the electrode was capable of detecting D-serine in brain tissue in vivo.


Biosensors and Bioelectronics | 2012

Multienzyme microbiosensor based on electropolymerized o-phenylenediamine for simultaneous in vitro determination of acetylcholine and choline

Anish Khan; Sulaiman Ab Ghani

The electrochemical biosensors based on poly(o-phenylenediamine) (PoPD) and acetylcholinesterase (AChE) and choline oxidase (ChO) enzymes were fabricated on carbon fibre (CF) substrate. The electropolymerized PoPD was used to reduce the interfering substances. The electrode assembly was completed by depositing functionalized carbon nano tubes (FCNTs) and Nafion (Naf). Amperometric detection of acetylcholine (ACh) and choline (Ch) were realized at an applied potential of +750 mV vs Ag/AgCl (saturated KCl). At pH 7.4, the final assembly, Naf-FCNTs/AChE-ChO((10:1))/PoPD/CF(Elip), was observed to have high sensitivity towards Ch (6.3±0.3 μA mM(-1)) and ACh (5.8±0.3 μA mM(-1)), linear range for Ch (K(M)=0.52±0.03 mM) and ACh (K(M)=0.59±0.07 mM), and for Ch the highest ascorbic acid blocking capacity (97.2±2 1mM AA). It had a response time of <5s and with 0.045 μM limit of detection. Studies on different ratio (ACh/Ch) revealed that 10:1, gave best overall response.


Biosensors and Bioelectronics | 2008

The application of glucose biosensor in studying the effects of insulin and anti-hypertensive drugs towards glucose level in brain striatum.

Farook Ahmad; Ahmad Pauzi Md Yusof; Martina Bainbridge; Sulaiman Ab Ghani

The mechanisms involving insulin and anti-hypertensive drugs regulation for in vivo cerebral glucose metabolism are not well-understood. This might be due to lack of direct means of measuring cerebral glucose. It is known that the continuous delivery of glucose to the brain is critical for its normal metabolic function. In this study, we report the effect of insulin and anti-hypertensive drugs on glucose level in the striatum of rats. The rats were divided into two groups, i.e. hyperglycemia (14.8+/-0.3mM plasma glucose) and diabetic (10.8+/-0.2mM plasma glucose). A custom-built glucose microsensor was implanted at coordinates A/P 1.0 from bregma, M/L +2.5 and D/V -5.0 (from dura) in the striatum. The amperometric response obtained at +0.23 V vs. Ag|AgCl corresponded to the glucose level in striatum. By varying the concentrations of protaminc zinc insulin infused into the rats, striatum glucose level was found to remain constant throughout, i.e. 9.8+/-0.1 and 4.7+/-0.1mM for hyperglycemic rats and for diabetic rats, respectively. However, infusion of valsartan and felodipine has lowered the striatum glucose level significantly. These findings agreed with the hypothesis that suggested striatum glucose uptake do not depend on insulin but is clearly dependant on anti-hypertensive drugs administration.


Journal of Colloid and Interface Science | 2009

The hexagonal close-packed nickel nanocrystals prepared by fast scan voltammetry

Ramin M.A.Tehrani; Sulaiman Ab Ghani

The nickel (Ni) nanocrystals (average diameter 9.7+/-2.3nm) were deposited onto composite graphite electrode from a plating solution of 5.0mM NiCl(2)6H(2)O and 1.0M NH(4)Cl using scan rate of 6500mVs(-1). The initial potential -1.5V and final potential -0.5V vs. Ag/AgCl with applied time 120s were used for the whole deposition process. The variations of applied overpotentials and deposition times have affected the characteristics of Ni nanocrystals. It was found that the structural formation of Ni nanocrystals obtained were almost pure hexagonal close-packed (hcp). This study has demonstrated that the tuning of the final size, morphology and structural formation of the Ni nanocrystal were affected by control of nucleation, growth and hydrogen evolution processes in fast scan voltammetry technique used.


Talanta | 2012

Electro polymerized 4-vinyl pyridine on 2B pencil graphite as ionophore for cadmium (II).

Joanna Lim Wee Ling; Anish Khan; Bahruddin Saad; Sulaiman Ab Ghani

A new poly(4-vinyl pyridine) (P4VP) based cadmium (Cd)-ion selective electrode (ISE) was developed. The 4-vinyl pyridine (4VP) was first polymerized electrochemically on the surface of graphite, later characterized by FTIR, SEM/EDX and then optimized as ISE for Cd. At optimal pH 6.4, slope of 27.7±0.8mVdecade(-1), linear concentration range of 1×10(-7) to 1.0×10(-1)M Cd(2+) and limit of detection (S/N=3) of 2.51×10(-8)M were obtained. The ISE was very selective towards Cd(2+), with K(pot)<1×10(-2) in the presence of the usual cations and anions in water samples. Response time and shelf life of less than 1min and 90 days, respectively, were observed. Its application was tested in various types of samples.


Applied Biochemistry and Biotechnology | 2013

A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview

Anish Khan; Aftab Aslam Parwaz Khan; Abdullah M. Asiri; Malik Abdul Rub; Naved Azum; Mohammed M. Rahman; Sher Bahadar Khan; Sulaiman Ab Ghani

Technology always has been an indispensible part in the development of biosensors. The performance of biosensors is being tremendously improved using new materials as transducer as well as binding material in their construction. The use of new materials allowed innovation on transduction technology in biosensor preparations. Because of the submicron dimensions of these sensors, simple and rapid analyses in vitro as well as in vivo are now possible. Portable instruments capable of analysing multiple components are becoming available, too. Sensors that provide excellent temporal and spatial resolution for in vivo monitoring such as for measurement of neurotransmitters have become prominent. The interest to improve the stability, sensitivity and selectivity of the sensors is paramount. This study tries to give an overview of the present status of the material-based biosensor design and new generation of choline/acetylcholine neurotransmitter biosensors.


Sensors | 2011

Ionophore-Based Potentiometric Sensors for the Flow-Injection Determination of Promethazine Hydrochloride in Pharmaceutical Formulations and Human Urine

Ahmed Khudhair Hassan; Bahruddin Saad; Sulaiman Ab Ghani; Rohana Adnan; Afidah Abdul Rahim; Norariza Ahmad; Marina Mokhtar; Suham Towfiq Ameen; Suad Mustafa Al-Araji

Plasticised poly(vinyl chloride)-based membranes containing the ionophores (α-, β- and γ-cyclodextrins (CD), dibenzo-18-crown-6 (DB18C6) and dibenzo-30-crown-10 (DB30C10) were evaluated for their potentiometric response towards promethazine (PM) in a flow injection analysis (FIA) set-up. Good responses were obtained when β- and γ-CDs, and DB30C10 were used. The performance characteristics were further improved when tetrakis(4-chlorophenyl) borate (KTPB) was added to the membrane. The sensor based on β-CD, bis(2-ethylhexyl) adipate (BEHA) and KTPB exhibited the best performance among the eighteen sensor compositions that were tested. The response was linear from 1 × 10−5 to 1 × 10−2 M, slope was 61.3 mV decade−1, the pH independent region ranged from 4.5 to 7.0, a limit of detection of 5.3 × 10−6 M was possible and a lifetime of more than a month was observed when used in the FIA system. Other plasticisers such as dioctyl phenylphosphonate and tributyl phosphate do not show significant improvements in the quality of the sensors. The promising sensors were further tested for the effects of foreign ions (Li+, Na+, K+, Mg2+, Ca2+, Co2+, Cu2+, Cr3+, Fe3+, glucose, fructose). FIA conditions (e.g., effects of flow rate, injection volume, pH of the carrier stream) were also studied when the best sensor was used (based on β-CD). The sensor was applied to the determination of PM in four pharmaceutical preparations and human urine that were spiked with different levels of PM. Good agreement between the sensor and the manufacturer’s claimed values (for pharmaceutical preparations) was obtained, while mean recoveries of 98.6% were obtained for spiked urine samples. The molecular recognition features of the sensors as revealed by molecular modelling were rationalised by the nature of the interactions and complexation energies between the host and guest molecules.


Sensors | 2012

Flow Injection Analysis of Mercury Using 4-(Dimethylamino) Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

Tara F. Tahir; Abdussalam Salhin; Sulaiman Ab Ghani

A flow injection analysis (FIA) incorporating a thiosemicarbazone-based coated wire electrode (CWE) was developed method for the determination of mercury(II). A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II), slope of 27.8 ± 1 mV per decade and correlation coefficient (R2) of 0.984 were obtained. The system was successfully applied for the determination of mercury(II) in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3)) were obtained, giving a typical throughput of 30 samples·h−1.

Collaboration


Dive into the Sulaiman Ab Ghani's collaboration.

Top Co-Authors

Avatar

Farook Ahmad

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Illyas Md Isa

Sultan Idris University of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anish Khan

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bahruddin Saad

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Norita Mohamed

Universiti Sains Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge