Suleiman Al-Obeid
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suleiman Al-Obeid.
Antimicrobial Agents and Chemotherapy | 1989
D M Shlaes; A Bouvet; C Devine; J H Shlaes; Suleiman Al-Obeid; R Williamson
A strain of Enterococcus faecalis (A256) was isolated from the urine of a patient with urinary sepsis and was found to exhibit susceptibilities (micrograms per milliliter) to various glycopeptides as follows: vancomycin, 256; teicoplanin, 16; 62208, 512; 62211, 4; and 62476, 16. As judged by growth rates before and after exposure to sub-MICs of glycopeptides, vancomycin and 62476 induced self-resistance, 62208 and 62211 induced slight self-resistance, and teicoplanin did not induce self-resistance. Vancomycin induced cross-resistance to all other glycopeptides tested, as judged both in growth experiments and by direct measurement of inhibition of peptidoglycan synthesis in cells exposed to sub-MICs of vancomycin. Thus, the spectra of activity of the glycopeptides were not correlated with their patterns of induction. There was a correlation between the increased synthesis of a 39-kilodalton (kDa) protein located in the cytoplasmic membrane and the induction of resistance. Protoplasts of A256 were susceptible to inhibition of peptidoglycan synthesis by vancomycin at levels similar to those for susceptible strains. Vancomycin resistance was transferable on filters from the parent strain to E. faecalis JH2-2 at a frequency of about 10(-7), and the 39-kDa protein was also inducible by glycopeptides in these transconjugants. We conclude that A256 is resistant to glycopeptides by virtue of the synthesis of a 39-kDa cytoplasmic membrane protein, that this protein is probably involved in preventing access of the glycopeptides to their peptidoglycan targets, and that this resistance is transferable, probably by conjugation. Images
Antimicrobial Agents and Chemotherapy | 1990
Suleiman Al-Obeid; Ekkehard Collatz; L Gutmann
The role of the glycopeptide-inducible proteins of Enterococcus faecium D366 (39.5 kilodaltons) and Enterococcus faecalis A256 (39 kilodaltons) in the mechanism of resistance to vancomycin and teicoplanin was examined. Crude cell walls from noninduced cells or from induced cells treated with sodium dodecyl sulfate to remove the inducible proteins were shown to bind vancomycin, in contrast to cell walls containing the cytoplasmic membrane-associated induced proteins, which did not bind vancomycin. Cytoplasmic membranes from vancomycin-induced cells did not inactivate (bind) vancomycin or teicoplanin, but they could protect the glycopeptides from being bound to the synthetic pentapeptide. This protection could be competitively abolished by D-alanyl-D-alanine. A decrease in glycopeptide binding to the pentapeptide was observed in a time-dependent fashion after treatment of the pentapeptide with the cytoplasmic membranes from induced cells. We hypothesize that the inducible proteins are responsible for glycopeptide resistance due to the binding to, and subsequent enzymatic modification of, the pentapeptide precursor of peptidoglycan, which is considered to be the natural target of glycopeptides. Images
Antimicrobial Agents and Chemotherapy | 1992
L Gutmann; D Billot-Klein; Suleiman Al-Obeid; I Klare; S Francoual; Ekkehard Collatz; J van Heijenoort
Vancomycin was found to coinduce DD-carboxypeptidase activity, together with resistance, in eight low- or high-level glycopeptide-resistant strains of enterococci. The constitutively resistant mutant (MT10) of a low-level-resistant strain of Enterococcus faecium (D366) spontaneously expressed a level of carboxypeptidase similar to that of the induced strain D366. Pentapeptide, UDP-MurNac-pentapeptide, as well as D-alanyl-D-alanine were in vitro substrates for the carboxypeptidase which was not inhibited by penicillin. The level of vancomycin resistance correlated roughly with the level of carboxypeptidase activity. We infer from these results that the carboxypeptidase is one component of the glycopeptide resistance mechanism. Images
Antimicrobial Agents and Chemotherapy | 1994
L Gutmann; Suleiman Al-Obeid; D Billot-Klein; M L Guerrier; Ekkehard Collatz
A synergistic effect between vancomycin or teicoplanin and different beta-lactam antibiotics was found for two strains of Enterococcus faecium, EFM4 and EFM11, expressing resistance to glycopeptides and belonging to the VANA class. The MICs of penicillin for these two strains were 16 and 128 micrograms/ml, respectively. By using a penicillin-binding protein (PBP) competition assay, it was shown that the affinities of PBPs for different beta-lactam antibiotics and the MICs of these antibiotics obtained in the presence of teicoplanin correlated with the substitution of two high-molecular-weight PBPs for the low-molecular-weight PBP5 as the essential target. Mutants of EFM4 and EFM11 which had lost the synergistic effect between beta-lactams and glycopeptides were selected on teicoplanin plus ceftriaxone at a frequency of 10(-5) and 10(-3), respectively. The mechanism of the loss of synergy was explored. For the mutants derived from EFM4, it was associated with a change in PBPs, while for the mutants derived from EFM11, it was related to some unknown change on the conjugative plasmid responsible for the glycopeptide resistance. These combined observations reflect the relationship which seems to exist between the new D-lactate peptidoglycan precursor, synthesized when the vancomycin resistance is expressed, and the affinity of the different PBPs for this precursor. Images
The Journal of Infectious Diseases | 1989
Russell Williamson; Suleiman Al-Obeid; Janet H. Shlaes; Fred W. Goldstein; David M. Shlaes
Fems Microbiology Letters | 1990
Suleiman Al-Obeid; L Gutmann; David M. Shlaes; Russell Williamson; Ekkehard Collatz
Journal of Antimicrobial Chemotherapy | 1990
Suleiman Al-Obeid; Laurent Gutmann; Russell Williamson
Antimicrobial Agents and Chemotherapy | 1996
L Gutmann; Suleiman Al-Obeid; D Billot-Klein; E Ebnet; W Fischer
Fems Microbiology Letters | 1992
Suleiman Al-Obeid; D. Billot-Klein; J van Heijenoort; Ekkehard Collatz; L Gutmann
The Journal of Infectious Diseases | 1989
David M. Shlaes; Suleiman Al-Obeid; Janet H. Shlaes; Russell Williamson