Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suliman Nakhal is active.

Publication


Featured researches published by Suliman Nakhal.


Journal of Materials Chemistry | 2012

Synthesis of ternary transition metal fluorides Li3MF6via a sol–gel route as candidates for cathode materials in lithium-ion batteries

Julia Kohl; Dennis Wiedemann; Suliman Nakhal; Patrick Bottke; Noel Ferro; Thomas Bredow; Erhard Kemnitz; Martin Wilkening; Paul Heitjans; Martin Lerch

A sol–gel route for ternary lithium fluorides of transition metals (M) is presented allowing the synthesis of Li3MF6-type and Li2MF5-type compounds. It is based on a fluorolytic process using transition metal acetylacetonates as precursors. The domain size of the obtained powders can be controlled by modifying the conditions of synthesis. 6Li and 7Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is used to study local environments of the Li ions in orthorhombic and monoclinic Li3VF6 as well as Li2MnF5. The number of magnetically inequivalent Li sites found by MAS NMR is in agreement with the respective crystal structure of the compounds studied. Quantum chemical calculations show that all materials have high de-lithiation energies making them suitable candidates to be used as high-voltage battery cathode materials.


ACS Applied Materials & Interfaces | 2015

Li ion dynamics along the inner surfaces of layer-structured 2H-LixNbS2.

Bernhard Stanje; Epp; Suliman Nakhal; Martin Lerch; Martin Wilkening

Layer-structured materials, such as graphite (LiCy) or Lix(Co,Ni,Mn)O2, are important electrode materials in current battery research that still relies on insertion materials. This is due to their excellent ability to reversibly accommodate small alkali ions such as Li(+) and Na(+). Despite of these applications, microscopic information on Li ion self-diffusion in transition metal sulfides are relatively rare. Here, we used (7)Li nuclear magnetic resonance (NMR) spectroscopy to study translational Li ion diffusion in hexagonal (2H) LixNbS2 (x = 0.3, 0.7, and 1) by means of variable-temperature NMR relaxometry. (7)Li spin-lattice relaxation rates and (7)Li NMR spectra were used to determine Li jump rates and activation barriers as a function of Li content. Hereby, NMR spin-lattice relaxation rates recorded with the spin-lock technique offered the possibility to study Li ion dynamics on both the short-range and long-range length scale. Information was extracted from complete diffusion-induced rate peaks that are obtained when the relaxation rate is plotted vs inverse temperature. The peak maximum of the three samples studied shifts toward higher temperatures with increasing Li content x in 2H-LixNbS2. Information on the dimensionality of the diffusion process was experimentally obtained by frequency dependent Rρ measurements carried out at T = 444 K, that is in the high-temperature regime of the rate peaks. A slight, but measurable frequency-dependence within this limit is found for all samples; it is in good agreement with predictions from relaxation models developed to approximate low-dimensional (2D) jump diffusion.


Journal of Physics: Condensed Matter | 2013

Two-dimensional diffusion in Li0.7NbS2 as directly probed by frequency-dependent 7Li NMR

Viktor Epp; Suliman Nakhal; Martin Lerch; Martin Wilkening

Li ion diffusion in layer-structured Li0.7NbS2 has been complementary investigated by nuclear magnetic resonance (NMR) spectroscopy from an atomic scale point of view. In the present case, (7)Li NMR spin-lattice relaxation (SLR) rates R1ρ probed in the rotating frame of reference proved very informative in characterizing the Li self-diffusion process in the van der Waals gap between the NbS2 layers. While temperature-variable SLRρ measurements were used to determine dynamic parameters such as jump rates (τ(-1)) and the activation energy (Ea), frequency-dependent measurements were used to specify the dimensionality of the diffusion process. In particular, the effect of annealing, i.e., the distribution of Li ions between the layers, on overall Li dynamics has been studied. When plotted in an Arrhenius diagram, the R1ρ rates of an annealed sample, which were recorded at a locking frequency of 20 kHz, pass through a diffusion-induced relaxation peak whose maximum shows up at 320 K. Employing an appropriate diffusion model and appropriately accounting for a non-diffusive background relaxation, a Li jump rate τ(-1)(300 K) ≈ 1.3 × 10(5) s(-1) and an activation energy Ea of 0.43(2) eV can be deduced. Most importantly, in the high-T limit of the diffusion-induced rate peak, i.e., when ω1τ << 1 holds, the rates follow a logarithmic frequency dependence. This points to a diffusion process of low dimensionality and is in good agreement with predictions of relaxation models developed for 2D diffusion.


Zeitschrift für Physikalische Chemie | 2015

NMR and Impedance Spectroscopy Studies on Lithium Ion Diffusion in Microcrystalline γ-LiAlO2

Elena Witt; Suliman Nakhal; C. Vinod Chandran; Martin Lerch; Paul Heitjans

Abstract In this work nuclear magnetic resonance (NMR) and impedance spectroscopy (IS) studies on Li ion dynamics in microcrystalline γ-LiAlO2 are presented. The sample was prepared by solid state synthesis between Li2CO3 and Al2O3 in air, followed by a quenching procedure. The presence of phase-pure γ-LiAlO2 was confirmed by X-ray powder diffraction including Rietveld refinement. Further structural characterization was done with 6Li, 7Li and 27Al NMR. Several NMR techniques such as spin-lattice relaxation measurements, motional narrowing experiments, as well as spin-alignment echo were employed for the investigation of Li ion diffusion. The measurements were carried out at high temperatures (up to 970 K) in order to access the regime of Li ion motion being very slow. The dc conductivities measured by IS in the temperature range from 680 K to 870 K were converted to diffusion coefficients being compatible with those obtained by NMR.


Zeitschrift für Naturforschung B | 2009

Synthesis, Crystal Structure and Magnetic Properties of Bixbyite-type Vanadium Oxide Nitrides

Suliman Nakhal; W. Hermes; Thorsten Ressler; Rainer Pöttgen; Martin Lerch

Ammonolysis of vanadium sulfide leads to the formation of bixbyite-type vanadium oxide nitrides. Small amounts of nitrogen incorporated in the structure result in the stabilization of the bixbyite type not known for vanadium oxides. The crystal structure was investigated using X-ray diffraction and X-ray absorption spectroscopy. At temperatures above 550 °C the powders decompose to corundumtype V2O3 containing no detectable amount of nitrogen. Below 39 K magnetic ordering is observed. Graphical Abstract Synthesis, Crystal Structure and Magnetic Properties of Bixbyite-type Vanadium Oxide Nitrides


Zeitschrift für Physikalische Chemie | 2017

Local Ion Dynamics in Polycrystalline β-LiGaO2: A Solid-State NMR Study

C. Vinod Chandran; Kai Volgmann; Suliman Nakhal; Reinhard Uecker; Elena Witt; Martin Lerch; Paul Heitjans

Abstract Solid-state nuclear magnetic resonance spectroscopy is an efficient technique to characterize dynamics and structure of materials. It has been widely used to elucidate ion dynamics in lithium ion conductors. Fast moving lithium ions are needed in energy storage devices, whereas slow ion motion is exploited in some materials used, for example, as blankets in fusion reactors. β-lithium gallium oxide (LiGaO2) is a slow Li+ ionic conductor similar to γ-lithium aluminum oxide (LiAlO2). In an ion conductor, in addition to the main diffusion process, localized motions (to-and-fro jumps) may be present. In the present work, with the help of solid-state NMR experiments, we report on the localized movements of Li+ ionic species in β-LiGaO2 in the temperature range between 300 K and 450 K. In this work, we have mainly extracted the peculiarities of ion dynamics from 7Li spin-alignment echo NMR measurements and the observation of the motional narrowing of the central transition signal of 7Li.


Zeitschrift für Physikalische Chemie | 2015

The High-Temperature Transformation from 1T- to 3R-LixTiS2 (x = 0.7, 0.9) as Observed in situ with Neutron Powder Diffraction

Dennis Wiedemann; Suliman Nakhal; Anatoliy Senyshyn; Thomas Bredow; Martin Lerch

Abstract Layered titanium disulfide is used as lithium-ion intercalating electrode material in batteries. The room-temperature stable trigonal 1T polymorphs of the intercalates LixTiS2(x ≤ 1) are widely-investigated. However, the rombohedral 3R polymorphs, being stable at higher temperatures for large x, are less well known. In this study, we report on the synthesis of phase-pure 1T-LixTiS2(x = 0.7,   0.9) and its transformation to the 3R phase between 673 and 873 K as monitored using high-temperature neutron powder diffractometry. For the 3R polymorph, full Rietveld refinements show lithium ions to be statistically distributed over octahedral voids at the fractional coordinates 0, 0, 1/2 , exclusively. The comparison of Madelung energies with results of periodic quantum-chemical calculations reveals that the evolution of lattice parameters and the room-temperature stability of the 1T phase are not governed by electrostatics, but by correlation and polarization. The insights gained do not only elucidate the structure of 3R-LixTiS2, but also help to understand and control polymorphism in layered transition-metal sulfides.


Zeitschrift für Physikalische Chemie | 2017

Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways

Kai Volgmann; Viktor Epp; Julia Langer; Bernhard Stanje; Jessica Heine; Suliman Nakhal; Martin Lerch; Martin Wilkening; Paul Heitjans

Abstract Fundamental research on lithium ion dynamics in solids is important to develop functional materials for, e.g. sensors or energy storage systems. In many cases a comprehensive understanding is only possible if experimental data are compared with predictions from diffusion models. Nuclear magnetic resonance (NMR), besides other techniques such as mass tracer or conductivity measurements, is known as a versatile tool to investigate ion dynamics. Among the various time-domain NMR techniques, NMR relaxometry, in particular, serves not only to measure diffusion parameters, such as jump rates and activation energies, it is also useful to collect information on the dimensionality of the underlying diffusion process. The latter is possible if both the temperature and, even more important, the frequency dependence of the diffusion-induced relaxation rates of actually polycrystalline materials is analyzed. Here we present some recent systematic relaxometry case studies using model systems that exhibit spatially restricted Li ion diffusion. Whenever possible we compare our results with data from other techniques as well as current relaxation models developed for 2D and 1D diffusion. As an example, 2D ionic motion has been verified for the hexagonal form of LiBH4; in the high-temperature limit the diffusion-induced 7Li NMR spin-lattice relaxation rates follow a logarithmic frequency dependence as is expected from models introduced for 2D diffusion. A similar behavior has been found for LixNbS2. In Li12Si7 a quasi-1D diffusion process seems to be present that is characterized by a square root frequency dependence and a temperature behavior of the 7Li NMR spin-lattice relaxation rates as predicted. Most likely, parts of the Li ions diffuse along the Si5 rings that form chains in the Zintl phase.


Zeitschrift für Physikalische Chemie | 2017

Solid-State NMR Spectroscopy Study of Cation Dynamics in Layered Na2Ti3O7 and Li2Ti3O7

Kai Volgmann; Vanessa Werth; Suliman Nakhal; Martin Lerch; Thomas Bredow; Paul Heitjans

Abstract Ti-based materials exhibit suitable properties for usage in secondary Li- and Na-ion batteries and were in the focus of several electrochemical and ion conductivity studies. A material of such interest is layer-structured, monoclinic Na2Ti3O7. Additionally, the sodium in Na2Ti3O7 can be replaced completely with lithium to achieve monoclinic Li2Ti3O7, whose electrochemical properties were already investigated as well. Both materials exhibit interesting properties such as zero-strain behavior upon intercalation and high cycling stability. However, there is still a lack of fundamental understanding of the ion diffusivity of both Na and Li in the corresponding host structure. Solid-state nuclear magnetic resonance (NMR) spectroscopy is used here for the first time to reveal the cation dynamics in layered Na2Ti3O7 and Li2Ti3O7. This includes activation energies for the ionic motion and jump rates on the microscopic scale from NMR spin-lattice relaxation (SLR), spin-alignment echo (SAE), and 2D NMR exchange techniques. Moreover, the dimensionality of the ionic motion is investigated by frequency-dependent NMR SLR. Structural details are studied using magic-angle spinning (MAS) NMR spectroscopy. Results for the electric field gradient at the Na and Li site, respectively, are compared with those from theoretical calculations performed within this study. The dynamics are similar for both cations, and the frequency-dependence of the 7Li NMR SLR rate indicates Li motion confined to two dimensions. Thus, these two materials may be regarded a model system for low-dimensional diffusion of two different cations.


Zeitschrift für Naturforschung B | 2016

New transition metal oxide fluorides with ReO3-type structure

Suliman Nakhal; Martin Lerch

Abstract The new niobium oxide fluorides MNbO2F4 [M = (Cr, Fe)], CrNb2O4F5, and Fe2Nb3O6F9 were prepared by treatment of chromium or iron nitrate with Nb-containing hydrofluoric acid solutions. Crystal structures were investigated by means of X-ray powder diffraction. All new compounds can be structurally refined in the cubic ReO3-type. The iron niobium oxide fluorides are reddish orange, and chromium containing phases exhibit a light green color. The niobium atoms are in the highest formal oxidation state.

Collaboration


Dive into the Suliman Nakhal's collaboration.

Top Co-Authors

Avatar

Martin Lerch

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Martin Wilkening

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis Wiedemann

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Dominik Weber

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Julia Kohl

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Viktor Epp

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Irran

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Helmut Ehrenberg

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge