Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suman K. Samanta is active.

Publication


Featured researches published by Suman K. Samanta.


ACS Applied Materials & Interfaces | 2013

Selective and Efficient Detection of Nitro-Aromatic Explosives in Multiple Media including Water, Micelles, Organogel, and Solid Support

Nilanjan Dey; Suman K. Samanta; Santanu Bhattacharya

Selective detection of nitro-aromatic compounds (NACs) at nanomolar concentration is achieved for the first time in multiple media including water, micelles or in organogels as well as using test strips. Mechanism of interaction of NACs with highly fluorescent p-phenylenevinylene-based molecules has been described as the electron transfer phenomenon from the electron-rich chromophoric probe to the electron deficient NACs. The selectivity in sensing is guided by the pKa of the probes as well as the NACs under consideration. TNP-induced selective gel-to-sol transition in THF medium is also observed through the reorganization of molecular self-assembly and the portable test trips are made successfully for rapid on-site detection purpose.


Accounts of Chemical Research | 2014

Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping

Suman K. Samanta; Martin Fritsch; Ullrich Scherf; Widianta Gomulya; Satria Zulkarnaen Bisri; Maria Antonietta Loi

The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as well as semiconducting tubes of different diameter and chirality. Although many techniques such as density gradient ultracentrifugation, dielectrophoresis, and dispersion by surfactants or polar biopolymers have been developed, so-called conjugated polymer wrapping is one of the most promising and powerful purification and discrimination strategies. The procedure involves debundling and dispersion of SWNTs by wrapping semiflexible conjugated polymers, such as poly(9,9-dialkylfluorene)s (PFx) or regioregular poly(3-alkylthiophene)s (P3AT), around the SWNTs, and is accompanied by SWNT discrimination by diameter and chirality. Thereby, the π-conjugated backbone of the conjugated polymers interacts with the two-dimensional, graphene-like π-electron surface of the nanotubes and the solubilizing alkyl side chains of optimal length support debundling and dispersion in organic solvents. Careful structural design of the conjugated polymers allows for a selective and preferential dispersion of both small and large diameter SWNTs or SWNTs of specific chirality. As an example, with polyfluorenes as dispersing agents, it was shown that alkyl chain length of eight carbons are favored for the dispersion of SWNTs with diameters of 0.8-1.2 nm and longer alkyls with 12-15 carbons can efficiently interact with nanotubes of increased diameter up to 1.5 nm. Polar side chains at the PF backbone produce dispersions with increased SWNT concentration but, unfortunately, cause reduction in selectivity. The selectivity of the dispersion process can be monitored by a combination of absorption, photoluminescence, and photoluminescence excitation spectroscopy, allowing identification of nanotubes with specific coordinates [(n,m) indices]. The polymer wrapping strategy enables the generation of SWNT dispersions containing exclusively semiconducting nanotubes. Toward the applications in electronic devices, until now most applied approach is a direct processing of such SWNT dispersions into the active layer of network-type thin film field effect transistors. However, to achieve promising transistor performance (high mobility and on-off ratio) careful removal of the wrapping polymer chains seems crucial, for example, by washing or ultracentrifugation. More defined positioning of the SWNTs can be accomplished in directed self-assembly procedures. One possible strategy uses diblock copolymers containing a conjugated polymer block as dispersing moiety and a second block for directed self-assembly, for example, a DNA block for specific interaction with complementary DNA strands. Another strategy utilizes reactive side chains for controlled anchoring onto patterned surfaces (e.g., by interaction of thiol-terminated alkyl side chains with gold surfaces). A further promising application of purified SWNT dispersions is the field of organic (all-carbon) or hybrid solar cell devices.


Journal of Materials Chemistry | 2010

Carbon nanotube reinforced supramolecular gels with electrically conducting, viscoelastic and near-infrared sensitive properties

Suman K. Samanta; Asish Pal; Santanu Bhattacharya; C. N. R. Rao

Pristine and long-chain functionalized single-walled carbon nanotubes (SWNTs) were incorporated successfully in supramolecular organogels formed by an all-trans tri(p-phenylenevinylene) bis-aldoxime to give rise to new nanocomposites with interesting mechanical, thermal and electrical properties. Variable-temperature UV-vis and fluorescence spectra reveal both pristine and functionalized SWNTs promote aggregation of the gelator molecules and result in quenching of the UV-vis and fluorescence intensity. Electron microscopy and confocal microscopy show the existence of a densely packed and directionally aligned fibrous network in the resulting nanocomposites. Differential scanning calorimetry (DSC) of the composites shows that incorporation of SWNTs increases the gel formation temperature. The DSC of the xerogels of 1-SWNT composites indicates formation of different thermotropic mesophases which is also evident from polarized optical microscopy. The reinforced aggregation of the gelators on SWNT doping was reflected in the mechanical properties of the composites. Rheology of the composites demonstrates the formation of a rigid and viscoelastic solid-like assembly on SWNT incorporation. The composites from gel-SWNTs were found to be semiconducting in nature and showed enhanced electrical conductivity compared to that of the native organogel. Upon irradiation with a near IR laser at 1064 nm for 5 min it was possible to selectively induce a gel-to-sol phase transition of the nanocomposites, while irradiation for even 30 min of the native organogel under identical conditions did not cause any gel-to-sol conversion.


Langmuir | 2009

Soft functional materials induced by fibrillar networks of small molecular photochromic gelators.

Santanu Bhattacharya; Suman K. Samanta

Low-molecular-mass organogelators (LMOGs) based on photochromic molecules aggregate in selected solvents to form gels through various spatio-temporal interactions. The factors that control the mode of aggregation of the chromophoric core in the LMOGs during gelation, gelation-induced changes in fluorescence, the formation of stacked superstructures of extended pi-conjugated systems, and so forth are discussed with selected examples. Possible ways of generating various light-harvesting assemblies are proposed, and some unresolved questions, future challenges, and their possible solutions on this topic are presented.


Langmuir | 2009

Choice of the End Functional Groups in Tri(p-phenylenevinylene) Derivatives Controls Its Physical Gelation Abilities†

Suman K. Samanta; Asish Pal; Santanu Bhattacharya

New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV-vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV-vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic pi-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.


Journal of Materials Chemistry | 2012

Aggregation induced emission switching and electrical properties of chain length dependent π-gels derived from phenylenedivinylene bis-pyridinium salts in alcohol–water mixtures

Suman K. Samanta; Santanu Bhattacharya

Supramolecular π-gels were formed in a mixture of aliphatic alcohols and water for a series of chromophoric phenylenedivinylene bis-N-alkyl pyridinium salts (PPV) appended with terminal aliphatic hydrocarbon chains of different lengths. Gelation could be controlled either by altering the ratio of various alcohol–water mixtures or by changing the aliphatic chain length of the gelator. The temperature- and the ratio-variation in the ethanol–water mixtures exhibited a tunable emission behavior depending on the extent of aggregation which was promoted by aromatic π-stacking, van der Waals and electrostatic interactions among the individual PPV units. Thus, a light-blue emission at higher temperature (>40 °C), a reddish-orange emission at low temperature (<20 °C) and a white-light emission at room temperature (25–30 °C) were observed in solution. The gelators possessing longer aliphatic chains exhibited a higher gel-melting temperature, increased viscoelasticity and shorter fiber diameter based on a delicate hydrophobic/hydrophilic balance. A semiconducting nature of the electrical conductivity was observed for the individual compounds and the magnitude of the current increased with increasing width of the gel fibers upon decreasing the aliphatic chain length. A reversible one-electron redox behavior was observed for the chromophore and the redox potential decreased with the increase in the chain length. A diffusion-controlled redox behavior was observed for the gelators with shorter aliphatic chains. However, the compounds with longer chains made the process diffusion-limited.


Journal of Physical Chemistry Letters | 2011

Surfactants Possessing Multiple Polar Heads. A Perspective on their Unique Aggregation Behavior and Applications.

Santanu Bhattacharya; Suman K. Samanta

Surfactants containing more than one head group are known to exhibit a wide range of interesting properties as they undergo aggregation in water. The correlation between the molecular structure of these surfactants and their properties (for example, critical micellar concentration, aggregation number, morphology, counterion dissociation, fractional charge, etc.) can provide useful information to define the structure-activity relationship. The influence of the number of head groups on the surfactant aggregation is further evident from interesting interfacial behavior, seen in biological applications. This Perspective highlights recent trends in surfactant aggregation effects and focuses on emerging challenges in the field.


Scientific Reports | 2013

Efficient Management of Fruit Pests by Pheromone Nanogels

Deepa Bhagat; Suman K. Samanta; Santanu Bhattacharya

Environment-friendly management of fruit flies involving pheromones is useful in reducing the undesirable pest populations responsible for decreasing the yield and the crop quality. A nanogel has been prepared from a pheromone, methyl eugenol (ME) using a low-molecular mass gelator. This was very stable at open ambient conditions and slowed down the evaporation of pheromone significantly. This enabled its easy handling and transportation without refrigeration, and reduction in the frequency of pheromone recharging in the orchard. Notably the involvement of the nano-gelled pheromone brought about an effective management of Bactrocera dorsalis, a prevalent harmful pest for a number of fruits including guava. Thus a simple, practical and low cost green chemical approach is developed that has a significant potential for crop protection, long lasting residual activity, excellent efficacy and favorable safety profiles. This makes the present invention well-suited for pest management in a variety of crops.


Chemistry: A European Journal | 2012

Composites of Graphene and Other Nanocarbons with Organogelators Assembled through Supramolecular Interactions

Suman K. Samanta; K. S. Subrahmanyam; Santanu Bhattacharya; C. N. R. Rao

Carbon nanomaterials (CNMs), such as exfoliated graphene (EG), long-chain functionalized EG, single-walled carbon nanotubes (SWNTs), and fullerene (C(60)), have been investigated for their interaction with two structurally different gelators based on all-trans tri-p-phenylenevinylene bis-aldoxime (1) and n-lauroyl-L-alanine (2) both in solution and in supramolecular organogels. Gelation occurs in toluene through hydrogen bonding and van der Waals interactions for 1 and 2 in addition to π-π stacking specifically in the case of 1. These nanocomposites provide a thorough understanding in terms of molecular-level interactions of dimensionally different CNMs with structurally different gelators. The presence of densely wrapped CNMs encapsulated fibrous network in the resulting composites is evident from various spectroscopic and microscopic studies, indicating the presence of supramolecular interactions. Concentration- and temperature-dependent UV/Vis and fluorescence spectra show that CNMs promote aggregation of the gelator molecules, leading to hypochromism and quenching of the fluorescence intensity. Thermotropic mesophases of 1 are altered by the inclusion of a small amount of CNMs. The gel-CNM composites show increased electrical conductivity compared with that of the native organogel. Rheological studies of the composites demonstrate the formation of rigid and viscoelastic solidlike assembly due to reinforced aggregation of the gelators on CNMs. Synergistic behavior is observed in case of the composite gel of 1, containing a mixture of EG and SWNT, when compared with other mixtures of CNMs in all combinations with EG. This affords new nanocomposites with interesting optical, thermal, electrical, and mechanical properties.


Chemistry: A European Journal | 2012

Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.

Suman K. Samanta; Santanu Bhattacharya

We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly.

Collaboration


Dive into the Suman K. Samanta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. N. R. Rao

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asish Pal

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Prabal K. Maiti

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Deepa Bhagat

Indian Council of Agricultural Research

View shared research outputs
Top Co-Authors

Avatar

Nilanjan Dey

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Saientan Bag

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduard Preis

University of Wuppertal

View shared research outputs
Researchain Logo
Decentralizing Knowledge