Suman Kumar Dhar
Jawaharlal Nehru University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suman Kumar Dhar.
Molecular and Biochemical Parasitology | 1994
Devinder Sehgal; Vivek Mittal; Suman Kumar Dhar; Alok Bhattacharya; Sudha Bhattacharya
We have sequenced the extrachromsomal ribosomal DNA (rDNA) circle of the human protozoan parasite Entamoeba histolytica HM-1:IMSS and present here the complete sequence organisation of the 24.5-kb molecule. Each circle contains two 5.9-kb rDNA transcription units organised as inverted repeats. The regions downstream (3543 bp) and upstream (9216 bp) of the rDNAs contain various families of short tandem repeats. Some of the upstream repeats share extensive sequence homology with the downstream repeats. In addition to the rDNAs themselves, the rDNA circle appears to code for only one other transcript which is 0.7 kb in size as seen in Northern blots. From DNA sequence analysis, no open reading frame could be assigned to the transcript. Extrachromosomal rDNA circles also exist in other E. histolytica strains. Restriction enzyme maps of rDNA circles were constructed from E. histolytica strains 200:NIH, HK-9 and Rahman; and Entamoeba moshkovskii strain Laredo. Striking differences were observed in the organisation of some of them, e.g. the HK-9, Rahman and Laredo circles contained only one rDNA unit and lacked the 0.7-kb transcript sequence. The short repeat sequences upstream and downstream of rDNAs were present in HK-9 and Rahman but absent in Laredo. Circles with one rDNA unit may be derived from those with two units by homologous recombination at direct repeat sequences located upstream and downstream of the two rDNAs.
Fems Microbiology Letters | 2008
Dhaneswar Prusty; Parul Mehra; Sandeep Srivastava; Amol V. Shivange; Ashish Gupta; Nilanjan Roy; Suman Kumar Dhar
Plasmodium falciparum sirtuin, PfSir2, contains histone deacetylase (HDAC) activity that may be central to the regulation of virulence gene expression in the parasites. Although a few reports have been published recently regarding in vitro and in vivo function of PfSir2, expression of the endogenous protein (c. 30 kDa) has not been shown yet. Here we report the presence of PfSir2 in the parasite at the protein level by specific antibodies. HDAC activity of PfSir2 can be inhibited by nicotinamide, a product of sirtuin reaction. Surprisingly, we find that nicotinamide also delays parasite growth significantly in culture. These findings further our knowledge on PfSir2 and raise the possibility of using an inexpensive agent like nicotinamide as an antimalarial in combination with other antiparasitic drugs.
Biochemical Journal | 2005
Rajesh K. Soni; Parul Mehra; Gauranga Mukhopadhyay; Suman Kumar Dhar
In Escherichia coli, DnaC is essential for loading DnaB helicase at oriC (the origin of chromosomal DNA replication). The question arises as to whether this model can be generalized to other species, since many eubacterial species fail to possess dnaC in their genomes. Previously, we have reported the characterization of HpDnaB (Helicobacter pylori DnaB) both in vitro and in vivo. Interestingly, H. pylori does not have a DnaC homologue. Using two different E. coli dnaC (EcdnaC) temperature-sensitive mutant strains, we report here the complementation of EcDnaC function by HpDnaB in vivo. These observations strongly suggest that HpDnaB can bypass EcDnaC activity in vivo.
PLOS ONE | 2009
Tara Kashav; Ramgopal Nitharwal; S. Arif Abdulrehman; Azat Gabdoulkhakov; Wolfram Saenger; Suman Kumar Dhar; Samudrala Gourinath
Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD) of H. pylori DnaB (HpDnaB) helicase at 2.2 Å resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.
Molecular and Cellular Biochemistry | 2003
Suman Kumar Dhar; Rajesh K. Soni; Bimal K. Das; Gauranga Mukhopadhyay
Although Helicobacter pylori infects 50% of the total human population, only a small fraction of the infected people suffer from severe diseases like peptic ulcers and gastric adenocarcinoma. H. pylori strains, host genotypes and environmental factors play important role in deciding the extent and severity of the gastroduodenal diseases. The bacteria has developed a unique set of virulence factors to survive in the extreme ecological niche of human stomach. Together these virulence factors make H. pylori one of the most successful human pathogenic bacteria colonizing more than half of the human population. Understanding the mechanism of action of the major H. pylori virulence factors will shed light into the molecular basis of its pathogenicity.
Molecular Microbiology | 2008
Ashish Gupta; Parul Mehra; Suman Kumar Dhar
The mechanism of DNA replication initiation and progression is poorly understood in the parasites, including human malaria parasite Plasmodium falciparum. Using bioinformatics tools and yeast complementation assay, we identified a putative homologue of Saccharomyces cerevisiaeorigin recognition complex subunit 5 in P. falciparum (PfORC5). PfORC5 forms distinct nuclear foci colocalized with the replication foci marker proliferating cell nuclear antigen (PfPCNA) and co‐immunoprecipitates with PCNA during early‐to‐mid trophozoite stage replicating parasites. Interestingly, these proteins separate from each other at the non‐replicating late schizont stage, citing the evidence of the presence of both PCNA and ORC components in replication foci during eukaryotic DNA replication. PfORC1, another ORC subunit, colocalizes with PfPCNA and PfORC5 at the beginning of DNA replication, but gets degraded at the late schizont stage, ensuring the regulation of DNA replication in the parasites. Further, we have identified putative PCNA‐interacting protein box in PfORC1 that may explain in part the colocalization of PfORC and PfPCNA. Additionally, use of specific DNA replication inhibitor hydroxyurea affects ORC5/PCNA foci formation and parasitic growth. These results strongly favour replication factory model in the parasites and confer great potential to understand the co‐ordination between ORC and PCNA during eukaryotic DNA replication in general.
Scientific Reports | 2015
Nagarjun Narayanaswamy; Manoj Kumar; Sadhan Das; Rahul Sharma; Pralok K. Samanta; Swapan K. Pati; Suman Kumar Dhar; Tapas K. Kundu; T. Govindaraju
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.
Nucleic Acids Research | 2015
Nagarjun Narayanaswamy; Shubhajit Das; Pralok K. Samanta; Khadija Banu; Guru Prasad Sharma; Neelima Mondal; Suman Kumar Dhar; Swapan K. Pati; T. Govindaraju
In molecular biology, understanding the functional and structural aspects of DNA requires sequence-specific DNA binding probes. Especially, sequence-specific fluorescence probes offer the advantage of real-time monitoring of the conformational and structural reorganization of DNA in living cells. Herein, we designed a new class of D2A (one-donor-two-acceptor) near-infrared (NIR) fluorescence switch-on probe named quinone cyanine–dithiazole (QCy–DT) based on the distinctive internal charge transfer (ICT) process for minor groove recognition of AT-rich DNA. Interestingly, QCy–DT exhibited strong NIR-fluorescence enhancement in the presence of AT-rich DNA compared to GC-rich and single-stranded DNAs. We show sequence-specific minor groove recognition of QCy–DT for DNA containing 5′-AATT-3′ sequence over other variable (A/T)4 sequences and local nucleobase variation study around the 5′-X(AATT)Y-3′ recognition sequence revealed that X = A and Y = T are the most preferable nucleobases. The live cell imaging studies confirmed mammalian cell permeability, low-toxicity and selective staining capacity of nuclear DNA without requiring RNase treatment. Further, Plasmodium falciparum with an AT-rich genome showed specific uptake with a reasonably low IC50 value (<4 µM). The ease of synthesis, large Stokes shift, sequence-specific DNA minor groove recognition with switch-on NIR-fluorescence, photostability and parasite staining with low IC50 make QCy–DT a potential and commercially viable DNA probe.
Molecular and Cellular Biology | 1996
Suman Kumar Dhar; Nirupam Roy Choudhury; Vivek Mittal; Alok Bhattacharya; Sudha Bhattacharya
In the protozoan parasite Entamoeba histolytica (which causes amoebiasis in humans), the rRNA genes (rDNA) in the nucleus are carried on an extrachromosomal circular plasmid. For strain HM-1:IMSS, the size of the rDNA plasmid is 24.5 kb, and 200 copies per genome are present. Each circle contains two rRNA transcription units as inverted repeats separated by upstream and downstream spacers. We have studied the replication of this molecule by neutral/neutral two-dimensional gel electrophoresis and by electron microscopy. All restriction fragments analyzed by two-dimensional gel electrophoresis gave signals corresponding to simple Ys and bubbles. This showed that replication initiated in this plasmid at multiple, dispersed locations spread throughout the plasmid. On the basis of the intensity of the bubble arcs, initiations from the rRNA transcription units seemed to occur more frequently than those from intergenic spacers. Multiple, dispersed initiation sites were also seen in the rDNA plasmid of strain HK-9 when it was analyzed by two-dimensional gel electrophoresis. Electron microscopic visualization of replicating plasmid molecules in strain HM-1:IMISS showed multiple replication bubbles in the same molecule. The location of bubbles on the rDNA circle was mapped by digesting with PvuI or BsaHI, which linearize the molecule, and with SacII, which cuts the circle twice. The distance of the bubbles from one end of the molecule was measured by electron microscopy. The data corroborated those from two-dimensional gels and showed that replication bubbles were distributed throughout the molecule and that they appeared more frequently in rRNA transcription units. The same interpretation was drawn from electron microscopic analysis of the HK-9 plasmid. Direct demonstration of more than one bubble in the same molecule is clear evidence that replication of this plasmid initiates at multiple sites. Potential replication origins are distributed throughout the plasmid. Such a mechanism is not known to operate in any naturally occurring prokaryotic or eukaryotic plasmid.
Nucleic Acids Research | 2010
Dhaneswar Prusty; Ashraf Dar; Rashmi Priya; Atul Sharma; Srikanta Dana; Nirupam Roy Choudhury; N. Subba Rao; Suman Kumar Dhar
Apicoplast, an essential organelle of human malaria parasite Plasmodium falciparum contains a ∼35 kb circular genome and is a possible target for therapy. Proteins required for the replication and maintenance of the apicoplast DNA are not clearly known. Here we report the presence of single–stranded DNA binding protein (SSB) in P falciparum. PfSSB is targeted to the apicoplast and it binds to apicoplast DNA. A strong ssDNA binding activity specific to SSB was also detected in P. falciparum lysate. Both the recombinant and endogenous proteins form tetramers and the homology modelling shows the presence of an oligosaccharide/oligonucleotide-binding fold responsible for ssDNA binding. Additionally, we used SSB as a tool to track the mechanism of delayed death phenomena shown by apicoplast targeted drugs ciprofloxacin and tetracycline. We find that the transport of PfSSB is severely affected during the second life cycle following drug treatment. Moreover, the translation of PfSSB protein and not the transcription of PfSSB seem to be down-regulated specifically during second life cycle although there is no considerable change in protein expression profile between drug-treated and untreated parasites. These results suggest dual control of translocation and translation of apicoplast targeted proteins behind the delayed death phenomena.