Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suman Nag is active.

Publication


Featured researches published by Suman Nag.


Journal of Biological Chemistry | 2011

Nature of the Amyloid-β Monomer and the Monomer-Oligomer Equilibrium

Suman Nag; Bidyut Sarkar; Arkarup Bandyopadhyay; Bankanidhi Sahoo; Varun K. A. Sreenivasan; Mamata Kombrabail; Chandrakesan Muralidharan; Sudipta Maiti

The monomer to oligomer transition initiates the aggregation and pathogenic transformation of Alzheimer amyloid-β (Aβ) peptide. However, the monomeric state of this aggregation-prone peptide has remained beyond the reach of most experimental techniques, and a quantitative understanding of this transition is yet to emerge. Here, we employ single-molecule level fluorescence tools to characterize the monomeric state and the monomer-oligomer transition at physiological concentrations in buffers mimicking the cerebrospinal fluid (CSF). Our measurements show that the monomer has a hydrodynamic radius of 0.9 ± 0.1 nm, which confirms the prediction made by some of the in silico studies. Surprisingly, at equilibrium, both Aβ40 and Aβ42 remain predominantly monomeric up to 3 μm, above which it forms large aggregates. This concentration is much higher than the estimated concentrations in the CSF of either normal or diseased brains. If Aβ oligomers are present in the CSF and are the key agents in Alzheimer pathology, as is generally believed, then these must be released in the CSF as preformed entities. Although the oligomers are thermodynamically unstable, we find that a large kinetic barrier, which is mostly entropic in origin, strongly impedes their dissociation. Thermodynamic principles therefore allow the development of a pharmacological agent that can catalytically convert metastable oligomers into nontoxic monomers.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human β-cardiac myosin motor function.

Ruth F. Sommese; Jongmin Sung; Suman Nag; Shirley Sutton; John C. Deacon; Elizabeth Choe; Leslie A. Leinwand; Kathleen M. Ruppel; James A. Spudich

Cardiovascular disorders are the leading cause of morbidity and mortality in the developed world, and hypertrophic cardiomyopathy (HCM) is among the most frequently occurring inherited cardiac disorders. HCM is caused by mutations in the genes encoding the fundamental force-generating machinery of the cardiac muscle, including β-cardiac myosin. Here, we present a biomechanical analysis of the HCM-causing mutation, R453C, in the context of human β-cardiac myosin. We found that this mutation causes a ∼30% decrease in the maximum ATPase of the human β-cardiac subfragment 1, the motor domain of myosin, and a similar percent decrease in the in vitro velocity. The major change in the R453C human β-cardiac subfragment 1 is a 50% increase in the intrinsic force of the motor compared with wild type, with no appreciable change in the stroke size, as observed with a dual-beam optical trap. These results predict that the overall force of the ensemble of myosin molecules in the muscle should be higher in the R453C mutant compared with wild type. Loaded in vitro motility assay confirms that the net force in the ensemble is indeed increased. Overall, this study suggests that the R453C mutation should result in a hypercontractile state in the heart muscle.


Biophysical Journal | 2010

Measurement of the Attachment and Assembly of Small Amyloid-β Oligomers on Live Cell Membranes at Physiological Concentrations Using Single-Molecule Tools

Suman Nag; Jiji Chen; Joseph Irudayaraj; Sudipta Maiti

It is thought that the pathological cascade in Alzheimers disease is initiated by the formation of amyloid-β (Aβ) peptide complexes on cell membranes. However, there is considerable debate about the nature of these complexes and the type of solution-phase Aβ aggregates that may contribute to their formation. Also, it is yet to be shown that Aβ attaches strongly to living cell membranes, and that this can happen at low, physiologically relevant Aβ concentrations. Here, we simultaneously measure the aggregate size and fluorescence lifetime of fluorescently labeled Aβ(1-40) on and above the membrane of cultured PC12 cells at near-physiological concentrations. We find that at 350 nM Aβ concentration, large (>>10 nm average hydrodynamic radius) assemblies of codiffusing, membrane-attached Aβ molecules appear on the cell membrane together with a near-monomeric species. When the extracellular concentration is 150 nM, the membrane contains only the smaller species, but with a similar degree of attachment. At both concentrations, the extracellular solution contains only small (∼2.3 nm average hydrodynamic radius) Aβ oligomers or monomers. We conclude that at near-physiological concentrations only the small oligomeric Aβ species are relevant, they are capable of attaching to the cell membrane, and they assemble in situ to form much larger complexes.


Journal of Chemical Physics | 2008

Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan.

Bankanidhi Sahoo; J. Balaji; Suman Nag; Sanjeev Kumar Kaushalya; Sudipta Maiti

Fluorescence correlation spectroscopy (FCS) has proven to be a powerful tool for the study of a range of biophysical problems including protein aggregation. However, the requirement of fluorescent labeling has been a major drawback of this approach. Here we show that the intrinsic tryptophan fluorescence, excited via a two-photon mechanism, can be effectively used to study the aggregation of tryptophan containing proteins by FCS. This method can also yield the tryptophan fluorescence lifetime in parallel, which provides a complementary parameter to understand the aggregation process. We demonstrate that the formation of soluble aggregates of barstar at pH 3.5 shows clear signatures both in the two-photon tryptophan FCS data and in the tryptophan lifetime analysis. The ability to probe the soluble aggregates of unmodified proteins is significant, given the major role played by this species in amyloid toxicity.


Biophysical Journal | 2009

On the Stability of the Soluble Amyloid Aggregates

Bankanidhi Sahoo; Suman Nag; Parijat Sengupta; Sudipta Maiti

Many amyloid proteins form metastable soluble aggregates (or protofibrils, or protein nanoparticles, with characteristic sizes from approximately 10 to a few hundred nm). These can coexist with protein monomers and amyloid precipitates. These soluble aggregates are key determinants of the toxicity of these proteins. It is therefore imperative to understand the physical basis underlying their stability. Simple nucleation theory, typically applied to explain the kinetics of amyloid precipitation, fails to predict such intermediate stable states. We examine stable nanoparticles formed by the Alzheimers amyloid-beta peptide (40 and 42 residues), and by the protein barstar. These molecules have different hydrophobicities, and therefore have different short-range attractive interactions between the molecules. We also vary the pH and the ionic strength of the solution to tune the long-range electrostatic repulsion between them. In all the cases, we find that increased long-range repulsion results in smaller stable nanoparticles, whereas increased hydrophobicity produces the opposite result. Our results agree with a charged-colloid type of model for these particles, which asserts that growth-arrested colloid particles can result from a competition between short-range attraction and long-range repulsion. The nanoparticle size varies superlinearly with the ionic strength, possibly indicating a transition from an isotropic to a linear mode of growth. Our results provide a framework for understanding the stability and growth of toxic amyloid nanoparticles, and provide cues for designing effective destabilizing agents.


Science Advances | 2015

Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function

Suman Nag; Ruth F. Sommese; Zoltán Ujfalusi; Ariana Combs; Stephen J. Langer; Shirley Sutton; Leslie A. Leinwand; Michael A. Geeves; Kathleen M. Ruppel; James A. Spudich

Force parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of molecular motor function. Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca2+-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation.


Nature Structural & Molecular Biology | 2017

The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations

Suman Nag; Darshan V. Trivedi; Saswata S. Sarkar; Arjun S. Adhikari; Margaret S. Sunitha; Shirley Sutton; Kathleen M. Ruppel; James A. Spudich

Hypertrophic cardiomyopathy (HCM) is primarily caused by mutations in β-cardiac myosin and myosin-binding protein-C (MyBP-C). Changes in the contractile parameters of myosin measured so far do not explain the clinical hypercontractility caused by such mutations. We propose that hypercontractility is due to an increase in the number of myosin heads (S1) that are accessible for force production. In support of this hypothesis, we demonstrate myosin tail (S2)-dependent functional regulation of actin-activated human β-cardiac myosin ATPase. In addition, we show that both S2 and MyBP-C bind to S1 and that phosphorylation of either S1 or MyBP-C weakens these interactions. Importantly, the S1-S2 interaction is also weakened by four myosin HCM-causing mutations but not by two other mutations. To explain these experimental results, we propose a working structural model involving multiple interactions, including those with myosins own S2 and MyBP-C, that hold myosin in a sequestered state.


PLOS ONE | 2013

Effects of troponin T cardiomyopathy mutations on the calcium sensitivity of the regulated thin filament and the actomyosin cross-bridge kinetics of human β-cardiac myosin.

Ruth F. Sommese; Suman Nag; Shirley Sutton; Susan M. Miller; James A. Spudich; Kathleen M. Ruppel

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human β-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca2+-activated ADP release rates involving the thin filament human β-cardiac myosin complex. Changes in Ca2+ sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca2+ induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human β-cardiac myosin.


PLOS ONE | 2011

Single molecule in vivo analysis of toll-like receptor 9 and CpG DNA interaction.

Jiji Chen; Suman Nag; Pierre-Alexandre Vidi; Joseph Irudayaraj

Toll-like receptor 9 (TLR9) activates the innate immune system in response to oligonucleotides rich in CpG whereas DNA lacking CpG could inhibit its activation. However, the mechanism of how TLR9 interacts with nucleic acid and becomes activated in live cells is not well understood. Here, we report on the successful implementation of single molecule tools, constituting fluorescence correlation/cross-correlation spectroscopy (FCS and FCCS) and photon count histogram (PCH) with fluorescence lifetime imaging (FLIM) to study the interaction of TLR9-GFP with Cy5 labeled oligonucleotide containing CpG or lacking CpG in live HEK 293 cells. Our findings show that i) TLR9 predominantly forms homodimers (80%) before binding to a ligand and further addition of CpG or non CpG DNA does not necessarily increase the proportion of TLR9 dimers, ii) CpG DNA has a lower dissociation constant (62 nM±9 nM) compared to non CpG DNA (153 nM±26 nM) upon binding to TLR9, suggesting that a motif specific binding affinity of TLR9 could be an important factor in instituting a conformational change-dependant activation, and iii) both CpG and non CpG DNA binds to TLR9 with a 1∶2 stoichiometry in vivo. Collectively, through our findings we establish an in vivo model of TLR9 binding and activation by CpG DNA using single molecule fluorescence techniques for single cell studies.


Journal of Biological Chemistry | 2015

Mechanistic Heterogeneity in Contractile Properties of α-Tropomyosin (TPM1) Mutants Associated with Inherited Cardiomyopathies

Tejas M. Gupte; Farah Haque; Binnu Gangadharan; Margaret S. Sunitha; Souhrid Mukherjee; Swetha Anandhan; Deepa Selvi Rani; Namita Mukundan; Amruta Jambekar; Kumarasamy Thangaraj; Ramanathan Sowdhamini; Ruth F. Sommese; Suman Nag; James A. Spudich; John A. Mercer

Background: Single residue substitutions in sarcomeric proteins cause most inherited cardiomyopathies. Results: Mutant α-tropomyosins cause multiple functional alterations in actin affinity and Ca2+ sensitivity. Conclusion: Mutants follow distinct mechanisms to change Ca2+ sensitivity. Significance: Fluorescence assays to measure changes in troponin C conformation may provide a simple platform for preliminary high throughput screening of modulatory small molecules to treat inherited cardiomyopathies. The most frequent known causes of primary cardiomyopathies are mutations in the genes encoding sarcomeric proteins. Among those are 30 single-residue mutations in TPM1, the gene encoding α-tropomyosin. We examined seven mutant tropomyosins, E62Q, D84N, I172T, L185R, S215L, D230N, and M281T, that were chosen based on their clinical severity and locations along the molecule. The goal of our study was to determine how the biochemical characteristics of each of these mutant proteins are altered, which in turn could provide a structural rationale for treatment of the cardiomyopathies they produce. Measurements of Ca2+ sensitivity of human β-cardiac myosin ATPase activity are consistent with the hypothesis that hypertrophic cardiomyopathies are hypersensitive to Ca2+ activation, and dilated cardiomyopathies are hyposensitive. We also report correlations between ATPase activity at maximum Ca2+ concentrations and conformational changes in TnC measured using a fluorescent probe, which provide evidence that different substitutions perturb the structure of the regulatory complex in different ways. Moreover, we observed changes in protein stability and protein-protein interactions in these mutants. Our results suggest multiple mechanistic pathways to hypertrophic and dilated cardiomyopathies. Finally, we examined a computationally designed mutant, E181K, that is hypersensitive, confirming predictions derived from in silico structural analysis.

Collaboration


Dive into the Suman Nag's collaboration.

Top Co-Authors

Avatar

Sudipta Maiti

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bidyut Sarkar

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bankanidhi Sahoo

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

Sanjeev Kumar Kaushalya

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

Darshan V. Trivedi

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge