Sumathy Mohan
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sumathy Mohan.
Atherosclerosis | 2002
Masao Hamuro; Jodie Polan; Mohan Natarajan; Sumathy Mohan
Delayed wound healing and accelerated atherosclerosis are common vascular complications of diabetes mellitus. Although elevated blood glucose level is the major contributing factor, mechanisms that mediate these complications are not clearly understood. In the present study, we have demonstrated that elevated glucose inhibits endothelial cell migration, thereby delaying wound healing. Our results clearly indicated that high glucose (10 or 30 mM) induced activation of nuclear factor kappa B (NF-kappaB) inhibited endothelial cell migration (P<0.05). High glucose induced NF-kappaB DNA binding activity may mediate this inhibition of migration by regulating intracellular nitric oxide. In vitro wound healing model in human aortic endothelial cells (HAEC) were used to evaluate cell migration under the influence of high glucose. The migration inhibited by high glucose was restored by NF-kappaB inhibitors (including E3-4-methylphenyl sulfonyl-2-propenenitrile, N-tosyl-Lys-chloromethylketone (TLCK), or over-expression of inhibitor subunit of kappaB) and endothelial nitric oxide synthase inhibitors (N-methyl-L-arginine (L-NMMA); and Nomega-nitro-L-arginine methyl ester (L-NAME)). Furthermore, NF-kappaB inhibitors attenuated high glucose induced eNOS expression and intracellular nitric oxide (NO) production. Cytoskeletal immunofluorescence staining confirmed differences in actin distribution in HAEC incubated in high glucose in the presence or absence of NF-kappaB and NO inhibitors, explaining the differences observed in migration. In summary, our results for the first time suggest therapeutic strategies involving inhibition of NF-kappaB activation induced by high glucose, which may improve wound healing and help avoid some of the vascular complications of diabetes.
American Journal of Physiology-cell Physiology | 1999
Sumathy Mohan; Natarajan Mohan; Anthony J. Valente; Eugene A. Sprague
We recently reported that prolonged exposure of human aortic endothelial cells (HAEC) to low shear stress flow patterns is associated with a sustained increase in the activated form of the transcriptional regulator nuclear factor-kappaB (NF-kappaB). Here we investigate the hypothesis that low shear-induced activation of NF-kappaB is responsible for enhanced expression of vascular cell adhesion molecule (VCAM-1) resulting in augmented endothelial cell-monocyte (EC-Mn) adhesion and that this activation is dependent on intracellular oxidant activity. Before exposure to low shear (2 dyn/cm2) for 6 h, HAEC were preincubated with or without the antioxidants pyrrolidine dithiocarbamate (PDTC) or N-acetyl-L-cysteine (NAC). PDTC strongly inhibited low shear-induced activation of NF-kappaB, expression of VCAM-1, and EC-Mn adhesion. Paradoxically, NAC exerted a positive effect on low shear-induced VCAM-1 expression and EC-Mn adhesion and only slightly downregulated NF-kappaB activation. However, cytokine-induced NF-kappaB activation and VCAM-1 expression are blocked by both PDTC and NAC. These data suggest that NF-kappaB plays a key role in low shear-induced VCAM-1 expression and that pathways mediating low shear- and cytokine-induced EC-Mn adhesion may be differentially regulated.
American Journal of Physiology-endocrinology and Metabolism | 2010
Puntip Tantiwong; Karthigayan Shanmugasundaram; Adriana Monroy; Sangeeta Ghosh; Mengyao Li; Ralph A. DeFronzo; Eugenio Cersosimo; Apiradee Sriwijitkamol; Sumathy Mohan; Nicolas Musi
NF-κB is a transcription factor that controls the gene expression of several proinflammatory proteins. Cell culture and animal studies have implicated increased NF-κB activity in the pathogenesis of insulin resistance and muscle atrophy. However, it is unclear whether insulin-resistant human subjects have abnormal NF-κB activity in muscle. The effect that exercise has on NF-κB activity/signaling also is not clear. We measured NF-κB DNA-binding activity and the mRNA level of putative NF-κB-regulated myokines interleukin (IL)-6 and monocyte chemotactic protein-1 (MCP-1) in muscle samples from T2DM, obese, and lean subjects immediately before, during (40 min), and after (210 min) a bout of moderate-intensity cycle exercise. At baseline, NF-κB activity was elevated 2.1- and 2.7-fold in obese nondiabetic and T2DM subjects, respectively. NF-κB activity was increased significantly at 210 min following exercise in lean (1.9-fold) and obese (2.6-fold) subjects, but NF-κB activity did not change in T2DM. Exercise increased MCP-1 mRNA levels significantly in the three groups, whereas IL-6 gene expression increased significantly only in lean and obese subjects. MCP-1 and IL-6 gene expression peaked at the 40-min exercise time point. We conclude that insulin-resistant subjects have increased basal NF-κB activity in muscle. Acute exercise stimulates NF-κB in muscle from nondiabetic subjects. In T2DM subjects, exercise had no effect on NF-κB activity, which could be explained by the already elevated NF-κB activity at baseline. Exercise-induced MCP-1 and IL-6 gene expression precedes increases in NF-κB activity, suggesting that other factors promote gene expression of these cytokines during exercise.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015
Sangeeta Ghosh; Raweewan Lertwattanarak; Jose De Jesus Garduño; Joaquin Joya Galeana; Jinqi Li; Frank Zamarripa; Jack L. Lancaster; Sumathy Mohan; Sophie E. Hussey; Nicolas Musi
Aging is associated with alterations in glucose metabolism and sarcopenia that jointly contribute to a higher risk of developing type 2 diabetes. Because aging is considered as a state of low-grade inflammation, in this study we examined whether older, healthy (lean, community-dwelling) participants have altered signaling flux through toll-like receptor 4 (TLR4), a key mediator of innate and adaptive immune responses. We also examined whether a 4-month aerobic exercise program would have an anti-inflammatory effect by reducing TLR4 expression and signaling. At baseline, muscle TLR4, nuclear factor κB p50 and nuclear factor κB p65 protein content, and c-Jun N-terminal kinase phosphorylation were significantly elevated in older versus young participants. The plasma concentration of the TLR4 agonist lipopolysaccharide and its binding protein also were significantly elevated in older participants, indicative of metabolic endotoxemia, which is a recently described phenomenon of increased plasma endotoxin level in metabolic disease. These alterations in older participants were accompanied by decreased insulin sensitivity, quadriceps muscle volume, and muscle strength. The exercise training program increased insulin sensitivity, without affecting quadriceps muscle volume or strength. Muscle TLR4, nuclear factor κB, and c-Jun N-terminal kinase, and plasma lipopolysaccharide and lipopolysaccharide binding protein were not changed by exercise. In conclusion, insulin resistance and sarcopenia of aging are associated with increased TLR4 expression/signaling, which may be secondary to metabolic endotoxemia.
The Journal of Physiology | 2013
Hanyu Liang; Puntip Tantiwong; Apiradee Sriwijitkamol; Karthigayan Shanmugasundaram; Sumathy Mohan; Sara E. Espinoza; Ralph A. DeFronzo; John J. Dubé; Nicolas Musi
• Reducing free fatty acids in the circulation gives protection against muscle insulin resistance. • In the present study, we investigated the mechanism by which free fatty acid reduction improves muscle insulin sensitivity. • The antilipolytic drug acipimox reduced the plasma concentration of unsaturated and saturated fatty acids in insulin‐resistant (obese and type 2 diabetic) subjects. • The reduction in plasma free fatty acid concentration caused by acipimox led to an improvement in local inflammation and insulin signalling in skeletal muscle. • The improvements in local inflammation and insulin signalling were more pronounced in obese type 2 diabetic subjects than obese non‐diabetic individuals, suggesting that diabetic subjects are more susceptible to the toxic effect of circulating free fatty acids.
American Journal of Physiology-cell Physiology | 2009
Sumathy Mohan; Ryszard Konopinski; Bo Yan; Victoria E. Centonze; Mohan Natarajan
A decline in the bioavailability of nitric oxide (NO) that causes endothelial dysfunction is a hallmark of diabetes. The availability of NO to the vasculature is regulated by endothelial nitric oxide synthase (eNOS) activity and the involvement of heat shock protein-90 (Hsp-90) in the regulation of eNOS activity has been demonstrated. Hsp-90 has been shown to interact with upstream kinases [inhibitor kappaB kinases (IKK)alpha, beta, and gamma] in nonvascular cells. In this study, we have investigated the interaction of Hsp-90-IKKbeta in endothelial cells under conditions of high glucose (HG) as a possible mechanism that diminishes Hsp-90-eNOS interaction, which could contribute to reduced bioavailability of NO. We report for the first time that IKKbeta interacts with Hsp-90, and this interaction is augmented by HG in vascular endothelial cells. HG also augments transcriptional (3.5 +/- 0.65-fold) and translational (1.97 +/- 0.17-fold) expression as well as the catalytic activity of IKKbeta (2.45 +/- 0.4-fold). Both IKKbeta and eNOS could be coimmunoprecipitated with Hsp-90. Inhibition of Hsp-90 with geldanamycin (2 microM) or Radicicol (20 microM) mitigated (0.45 +/- 0.04-fold and 0.93 +/- 0.16-fold, respectively) HG induced-IKKbeta activity (2.5 +/- 0.42-fold). Blocking of IKKbeta expression by IKK inhibitor II (15 microM wedelolactone) or small interferring RNA (siRNA) improved Hsp-90-eNOS interaction and NO production under conditions of HG. These results illuminate a possible mechanism for the declining eNOS activity reported under conditions of HG.
British Journal of Radiology | 2008
Mohan Natarajan; Sumathy Mohan; Ryszard Konopinski; Randal A. Otto; Terence S. Herman
Our objective was to understand the mechanism through which cells that initially survive irradiation could acquire survival advantage. In this study, we show evidence that low-linear energy transfer gamma-radiation can induce telomerase enzyme activity in primary aortic endothelial cells, and that an upstream regulator, nuclear factor kappa B (NF-kappaB), controls this activation. Telomeric repeat amplification protocol (TRAP) assay showed that cells exposed to a dose of 2 Gy induce telomerase activity. Subsequent analysis revealed that radiation-induced telomeric activity is regulated at the transcriptional level by triggering activation of the promoter of the telomerase catalytic subunit, telomerase reverse transcriptase (TERT). A mechanistic study revealed that NF-kappaB becomes functionally activated upon radiation exposure and mediates the upregulation of telomerase activity by binding to the kappaB-binding region in the promoter region of the TERT gene. More significantly, elimination of the NF-small ka, CyrillicB recognition site on the telomerase promoter or inhibition of NF-small ka, CyrillicB by ectopically expressing the inhibitor protein IkappaBalpha mutant (Ismall ka, CyrillicBalpha(S32A/S36A))) compromises radiation-induced telomerase promoter activation. Consistent with the notion that NF-kappaB mediates gamma-ray-induced telomerase responses, TRAP assay revealed that ectopically expressed IkappaBalpha(S32A/S36A)) also attenuated telomerase enzyme activity. These findings indicate that NF-kappaB activation following ionizing radiation exposure may elicit a survival advantage by upregulating and maintaining telomerase activity.
Endocrinology | 2009
Y. Wittrant; Yves Gorin; Sumathy Mohan; Brent Wagner; Sherry L. Abboud-Werner
Colony-stimulating factor-1 (CSF-1), released by osteoblasts, stimulates the proliferation of osteoclast progenitors via the c-fms receptor (CSF-1R) and, in combination with receptor activator of nuclear factor-kappaB ligand (RANKL), leads to the formation of mature osteoclasts. Whether the CSF-1R is expressed by osteoblasts and mediates specific biological effects in osteoblasts has not been explored. Wild-type primary calvaria osteoblasts (OB) were analyzed for CSF-1R expression (RT-PCR and Western blot) and functionality (immunocomplex kinase assay). OB were serum starved for 24 h, and the effect of CSF-1 (0-100 ng/ml) on OB biological activities was determined at 48 h. In wild-type mouse bone marrow cultures, CSF-1 was tested for its effect on RANKL mRNA and osteoclast formation. Because ROS influence osteoblast RANKL expression, studies analyzed the effect of CSF-1 on reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and Nox1 and Nox4 proteins. Results indicate that OB express CSF-1R mRNA and protein and that CSF-1R could be phosphorylated in the presence of CSF-1. In osteoblasts, CSF-1 decreased RANKL mRNA in a dose- and time-dependent manner. Incubation of bone marrow cultures with CSF-1 resulted in a significant decline in tartrate-resistant acid phosphatase (TRACP) activity and CTR expression. RANKL-decreased expression by CSF-1 was correlated with a decrease of NADPH oxidase activity as well as Nox1 and Nox4 protein levels. These findings provide the first evidence that osteoblasts express CSF-1R and are a target for CSF-1 ligand. CSF-1-mediated inhibition of RANKL expression on osteoblasts may provide an important mechanism for coupling bone formation/resorption and preventing excessive osteoclastogenesis during normal skeletal growth.
Laboratory Investigation | 2012
Chih Ko Yeh; Stephen E. Harris; Sumathy Mohan; Diane Horn; Roberto J. Fajardo; Yong Hee P Chun; James H. Jorgensen; Mary MacDougall; Sherry L. Abboud-Werner
Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita −/− mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita −/− and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita −/− mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita −/− teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia and hyposalivation may provide a useful strategy for preventing the dental complications of diabetes and promoting oral health in this population.
Clinical Immunology and Immunopathology | 1992
Sumathy Mohan; Richard J. Barohn; Keith A. Krolick
Antibodies obtained from the plasma of patients with myasthenia gravis (MG) were found to contain reactivity against both the classic target antigen, the acetylcholine receptor, as well as muscle myosin. This observation was consistent with several previously published reports. However, it was also observed in the present study that much of the dual reactivity contained in MG plasma was due to the ability of individual clonotypic species of anti-receptor antibodies to also bind myosin. Furthermore, the cross-reactivity demonstrated by these antibodies appeared to involve a main immunogenic region of the acetylcholine receptor and an enzymatically important region in the head of the myosin heavy chain. This observation appears to provide new explanations for the epitope-restricted antibody response seen in MG patients.
Collaboration
Dive into the Sumathy Mohan's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs