Sumeet Sarin
Columbia University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sumeet Sarin.
Nature Methods | 2008
Sumeet Sarin; Snehit Prabhu; M. Maggie O'Meara; Itsik Pe'er; Oliver Hobert
Identification of the molecular lesion in Caenorhabditis elegans mutants isolated through forward genetic screens usually involves time-consuming genetic mapping. We used Illumina deep sequencing technology to sequence a complete, mutant C. elegans genome and thus pinpointed a single-nucleotide mutation in the genome that affects a neuronal cell fate decision. This constitutes a proof-of-principle for using whole-genome sequencing to analyze C. elegans mutants.
PLOS ONE | 2010
Maria Doitsidou; Richard J. Poole; Sumeet Sarin; Oliver Hobert
Whole-genome sequencing (WGS) is becoming a fast and cost-effective method to pinpoint molecular lesions in mutagenized genetic model systems, such as Caenorhabditis elegans. As mutagenized strains contain a significant mutational load, it is often still necessary to map mutations to a chromosomal interval to elucidate which of the WGS-identified sequence variants is the phenotype-causing one. We describe here our experience in setting up and testing a simple strategy that incorporates a rapid SNP-based mapping step into the WGS procedure. In this strategy, a mutant retrieved from a genetic screen is crossed with a polymorphic C. elegans strain, individual F2 progeny from this cross is selected for the mutant phenotype, the progeny of these F2 animals are pooled and then whole-genome-sequenced. The density of polymorphic SNP markers is decreased in the region of the phenotype-causing sequence variant and therefore enables its identification in the WGS data. As a proof of principle, we use this strategy to identify the molecular lesion in a mutant strain that produces an excess of dopaminergic neurons. We find that the molecular lesion resides in the Pax-6/Eyeless ortholog vab-3. The strategy described here will further reduce the time between mutant isolation and identification of the molecular lesion.
Nature Methods | 2009
Maria Doitsidou; Sumeet Sarin; Oliver Hobert
Forward genetic screens for mutants in which specific biological processes are disrupted are a key strength of model systems like C.elegans or Drosophila. However, the road from isolating a phenotype-causing mutant strain to identifying the molecular nature of the genetic change, most often as little as a single point mutation, is cumbersome, traditionally involving timeconsuming genetic mapping strategies. We have recently shown in a proof-of-principle study that conventional mapping steps can be shortcut through the use of whole genome sequencing (WGS) with massively parallel, deep-sequencing technology 1,2 (Suppl. Table 1). A similar proof-of-principle approach has proven successful for Drosophila mutant identification as well 3.
Genetics | 2010
Sumeet Sarin; Vincent Bertrand; Alexander Boyanov; Maria Doitsidou; Richard J. Poole; Surinder Narula; Oliver Hobert
Whole-genome sequencing (WGS) of organisms displaying a specific mutant phenotype is a powerful approach to identify the genetic determinants of a plethora of biological processes. We have previously validated the feasibility of this approach by identifying a point-mutated locus responsible for a specific phenotype, observed in an ethyl methanesulfonate (EMS)-mutagenized Caenorhabditis elegans strain. Here we describe the genome-wide mutational profile of 17 EMS-mutagenized genomes as assessed with a bioinformatic pipeline, called MAQGene. Surprisingly, we find that while outcrossing mutagenized strains does reduce the total number of mutations, a striking mutational load is still observed even in outcrossed strains. Such genetic complexity has to be taken into account when establishing a causative relationship between genotype and phenotype. Even though unintentional, the 17 sequenced strains described here provide a resource of allelic variants in almost 1000 genes, including 62 premature stop codons, which represent candidate knockout alleles that will be of further use for the C. elegans community to study gene function.
PLOS ONE | 2008
Yufeng Shen; Sumeet Sarin; Ye Liu; Oliver Hobert; Itsik Pe'er
Background Whole-genome sequencing represents a promising approach to pinpoint chemically induced mutations in genetic model organisms, thereby short-cutting time-consuming genetic mapping efforts. Principal Findings We compare here the ability of two leading high-throughput platforms for paired-end deep sequencing, SOLiD (ABI) and Genome Analyzer (Illumina; “Solexa”), to achieve the goal of mutant detection. As a test case we used a mutant C. elegans strain that harbors a mutation in the lsy-12 locus which we compare to the reference wild-type genome sequence. We analyzed the accuracy, sensitivity, and depth-coverage characteristics of the two platforms. Both platforms were able to identify the mutation that causes the phenotype of the mutant C. elegans strain, lsy-12. Based on a 4 MB genomic region in which individual variants were validated by Sanger sequencing, we observe tradeoffs between rates of false positives and false negatives when using both platforms under similar coverage and mapping criteria. Significance In conclusion, whole-genome sequencing conducted by either platform is a viable approach for the identification of single-nucleotide variations in the C. elegans genome.
Molecular and Cellular Biology | 2003
Juan Lucas Argueso; Amanda W. Kijas; Sumeet Sarin; Julie Akiko Heck; Marc Waase; Eric Alani
ABSTRACT In eukaryotic cells, DNA mismatch repair is initiated by a conserved family of MutS (Msh) and MutL (Mlh) homolog proteins. Mlh1 is unique among Mlh proteins because it is required in mismatch repair and for wild-type levels of crossing over during meiosis. In this study, 60 new alleles of MLH1 were examined for defects in vegetative and meiotic mismatch repair as well as in meiotic crossing over. Four alleles predicted to disrupt the Mlh1p ATPase activity conferred defects in all functions assayed. Three mutations, mlh1-2, -29, and -31, caused defects in mismatch repair during vegetative growth but allowed nearly wild-type levels of meiotic crossing over and spore viability. Surprisingly, these mutants did not accumulate high levels of postmeiotic segregation at the ARG4 recombination hotspot. In biochemical assays, Pms1p failed to copurify with mlh1-2, and two-hybrid studies indicated that this allele did not interact with Pms1p and Mlh3p but maintained wild-type interactions with Exo1p and Sgs1p. mlh1-29 and mlh1-31 did not alter the ability of Mlh1p-Pms1p to form a ternary complex with a mismatch substrate and Msh2p-Msh6p, suggesting that the region mutated in these alleles could be responsible for signaling events that take place after ternary complex formation. These results indicate that mismatches formed during genetic recombination are processed differently than during replication and that, compared to mismatch repair functions, the meiotic crossing-over role of MLH1 appears to be more resistant to mutagenesis, perhaps indicating a structural role for Mlh1p during crossing over.
Genetics | 2007
Sumeet Sarin; M. Maggie O'Meara; Eileen B. Flowers; Celia Antonio; Richard J. Poole; Dominic Didiano; Robert J. Johnston; Sarah Chang; Surinder Narula; Oliver Hobert
We describe here the results of genetic screens for Caenorhabditis elegans mutants in which a single neuronal fate decision is inappropriately executed. In wild-type animals, the two morphologically bilaterally symmetric gustatory neurons ASE left (ASEL) and ASE right (ASER) undergo a left/right asymmetric diversification in cell fate, manifested by the differential expression of a class of putative chemoreceptors and neuropeptides. Using single cell-specific gfp reporters and screening through a total of almost 120,000 haploid genomes, we isolated 161 mutants that define at least six different classes of mutant phenotypes in which ASEL/R fate is disrupted. Each mutant phenotypic class encompasses one to nine different complementation groups. Besides many alleles of 10 previously described genes, we have identified at least 16 novel “lsy” genes (“laterally symmetric”). Among mutations in known genes, we retrieved four alleles of the miRNA lsy-6 and a gain-of-function mutation in the 3′-UTR of a target of lsy-6, the cog-1 homeobox gene. Using newly found temperature-sensitive alleles of cog-1, we determined that a bistable feedback loop controlling ASEL vs. ASER fate, of which cog-1 is a component, is only transiently required to initiate but not to maintain ASEL and ASER fate. Taken together, our mutant screens identified a broad catalog of genes whose molecular characterization is expected to provide more insight into the complex genetic architecture of a left/right asymmetric neuronal cell fate decision.
Development | 2009
Sumeet Sarin; Celia Antonio; Baris Tursun; Oliver Hobert
An understanding of the molecular mechanisms of cell fate determination in the nervous system requires the elucidation of transcriptional regulatory programs that ultimately control neuron-type-specific gene expression profiles. We show here that the C. elegans Tailless/TLX-type, orphan nuclear receptor NHR-67 acts at several distinct steps to determine the identity and subsequent left/right (L/R) asymmetric subtype diversification of a class of gustatory neurons, the ASE neurons. nhr-67 controls several broad aspects of sensory neuron development and, in addition, triggers the expression of a sensory neuron-type-specific selector gene, che-1, which encodes a zinc-finger transcription factor. Subsequent to its induction of overall ASE fate, nhr-67 diversifies the fate of the two ASE neurons ASEL and ASER across the L/R axis by promoting ASER and inhibiting ASEL fate. This function is achieved through direct expression activation by nhr-67 of the Nkx6-type homeobox gene cog-1, an inducer of ASER fate, that is inhibited in ASEL through the miRNA lsy-6. Besides controlling bilateral and asymmetric aspects of ASE development, nhr-67 is also required for many other neurons of diverse lineage history and function to appropriately differentiate, illustrating the broad and diverse use of this type of transcription factor in neuronal development.
Neural Development | 2010
Andrew D Goldsmith; Sumeet Sarin; Shawn R. Lockery; Oliver Hobert
BackgroundNervous systems are generally bilaterally symmetric on a gross structural and organizational level but are strongly lateralized (left/right asymmetric) on a functional level. It has been previously noted that in vertebrate nervous systems, symmetrically positioned, bilateral groups of neurons in functionally lateralized brain regions differ in the size of their soma. The genetic mechanisms that control these left/right asymmetric soma size differences are unknown. The nematode Caenorhabditis elegans offers the opportunity to study this question with single neuron resolution. A pair of chemosensory neurons (ASEL and ASER), which are bilaterally symmetric on several levels (projections, synaptic connectivity, gene expression patterns), are functionally lateralized in that they express distinct chemoreceptors and sense distinct chemosensory cues.ResultsWe describe here that ASEL and ASER also differ substantially in size (soma volume, axonal and dendritic diameter), a feature that is predicted to change the voltage conduction properties of the two sensory neurons. This difference in size is not dependent on sensory input or neuronal activity but developmentally programmed by a pathway of gene regulatory factors that also control left/right asymmetric chemoreceptor expression of the two ASE neurons. This regulatory pathway funnels via the DIE-1 Zn finger transcription factor into the left/right asymmetric distribution of nucleoli that contain the rRNA regulator Fibrillarin/FIB-1, a RNA methyltransferase implicated in the non-hereditary immune disease scleroderma, which we find to be essential to establish the size differences between ASEL and ASER.ConclusionsTaken together, our findings reveal a remarkable conservation of the linkage of functional lateralization with size differences across phylogeny and provide the first insights into the developmentally programmed regulatory mechanisms that control neuron size lateralities.
Genetics | 2002
Juan Lucas Argueso; Daniel C. Smith; James Yi; Marc Waase; Sumeet Sarin; Eric Alani