Sumihiko Hagita
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sumihiko Hagita.
Journal of Clinical Investigation | 2016
Claudia Goettsch; Joshua D. Hutcheson; Masanori Aikawa; Hiroshi Iwata; Tan Pham; Anders Nykjaer; Mads Kjolby; Maximillian A. Rogers; Thomas Michel; Manabu Shibasaki; Sumihiko Hagita; Rafael Kramann; Daniel J. Rader; Peter Libby; Sasha Singh; Elena Aikawa
Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation of sortilin. In a murine model, Sort1-deficiency reduced arterial calcification but did not affect bone mineralization. Additionally, transfer of sortilin-deficient BM cells to irradiated atherosclerotic mice did not affect vascular calcification, indicating a primary role of SMC-derived sortilin. Together, the results of this study identify sortilin phosphorylation as a potential therapeutic target for ectopic calcification/microcalcification and may clarify the mechanism that underlies the genetic association between the SORT1 gene locus and coronary artery calcification.
PLOS ONE | 2011
Sumihiko Hagita; Mizuko Osaka; Kentaro Shimokado; Masayuki Yoshida
Background Although inflammation within adipose tissues is known to play a role in metabolic syndrome, the causative connection between inflamed adipose tissue and atherosclerosis is not fully understood. In the present study, we examined the direct effects of adipose tissue on macro-vascular inflammation using intravital microscopic analysis of the femoral artery after adipose tissue transplantation. Methods and Results We obtained subcutaneous (SQ) and visceral (VIS) adipose tissues from C57BL/6 mice fed normal chow (NC) or a high fat diet (HF), then transplanted the tissues into the perivascular area of the femoral artery of recipient C57/BL6 mice. Quantitative intravital microscopic analysis revealed an increase in adherent leukocytes after adipose tissue transplantation, with VIS found to induce significantly more leukocyte accumulation as compared to SQ. Moreover, adipose tissues from HF fed mice showed significantly more adhesion to the femoral artery. Simultaneous flow cytometry demonstrated upregulation of CD11b on peripheral granulocyte and monocytes after adipose tissue transplantation. We also observed dominant expressions of the inflammatory cytokine IL-6, and chemokines MCP-1 and MIP-1β in the stromal vascular fraction (SVF) of these adipose tissues as well as sera of recipient mice after transplantation. Finally, massive accumulations of pro-inflammatory and dendritic cells were detected in mice with VIS transplantation as compared to SQ, as well as in HF mice as compared to those fed NC. Conclusion Our in vivo findings indicate that adipose tissue stimulates leukocyte accumulation in the femoral artery. The underlying mechanisms involve upregulation of CD11b in leukocytes, induction of cytokines and chemokines, and accumulation of pro-inflammatory cells in the SVF.
Hypertension | 2008
Sumihiko Hagita; Mizuko Osaka; Kentaro Shimokado; Masayuki Yoshida
Leukocyte recruitment plays a pivotal role during inflammation after vascular injury. The importance of oxidative stress in vascular injury and its modulation by angiotensin II receptor blockers (olmesartan) have been demonstrated. We examined the contribution of leukocyte-associated oxidative stress in acute-phase leukocyte recruitment and its modulation by olmesartan. Male mice were treated with olmesartan (5 mg/kg per day) or vehicle for 7 days before the transluminal wire injury of the femoral artery. Intravital microscopy of the artery revealed that the mechanical injury increased adherent leukocytes at both 24 hours and 7 days after the injury, which was significantly reduced by olmesartan treatment. Dihydroethidium-associated fluorescence intensity observed in vehicle-treated mice was significantly diminished under olmesartan treatment. Apocynin, a nicotinamide-adenine dinucleotide phosphate oxidase inhibitor, showed a similar inhibitory effect on the leukocyte adhesion. Adoptive transfer of mononuclear cells, harvested from mice after wire injury, but not from those without wire injury, exhibited adhesion to the recipient injured artery. Furthermore, olmesartan treatment of mononuclear cells, but not of injured vasculature, reduced their recruitment to the injured artery. These data indicate that leukocyte recruitment to the mechanically injured artery is mediated by oxidative stress in leukocytes but not in vasculatures. Treatment with olmesartan blocked leukocyte recruitment by antagonizing mononuclear cells-associated oxidative stress.
Journal of Diabetes Investigation | 2017
Wataru Yano; Noriyuki Inoue; Shiori Ito; Takahiro Itou; Misako Yasumura; Yasunobu Yoshinaka; Sumihiko Hagita; Moritaka Goto; Takashi Nakagawa; Keisuke Inoue; Sohei Tanabe; Kohei Kaku
Dipeptidyl peptidase‐4 inhibitors are used for treatment of patients with type 2 diabetes. In addition to glycemic control, these agents showed beneficial effects on lipid metabolism in clinical trials. However, the mechanism underlying the lipid‐lowering effect of dipeptidyl peptidase‐4 inhibitors remains unclear. Here, we investigated the lipid‐lowering efficacy of anagliptin in a hyperlipidemic animal model, and examined the mechanism of action.
BioMed Research International | 2013
Mizuko Osaka; Sumihiko Hagita; Masayuki Yoshida
Objective. To monitor the anti-inflammatory effect of rosuvastatin in leukocyte endothelial interactions in the atheroprone femoral artery in vivo. Methods and Results. Male Apolipoprotein E null mice (ApoE−/− mice, 6 weeks old) were fed a high-fat diet (20% fat, 1.25% cholesterol) with or without the HMG CoA reductase inhibitor rosuvastatin (10 mg/kg/day) for 6 weeks. Significant leukocyte adhesion was observed in the femoral artery of ApoE−/− mice, but not of wild type mice, in the absence of rosuvastatin. Interestingly, no obvious plaque formation was observed in the artery at this time point. The number of adherent leukocytes was dramatically diminished in ApoE−/− mice treated with rosuvastatin. DHE-associated oxidative stress and the expression of gp91-phox, a component of NADPH oxidase, were induced in ApoE−/− mice and were abolished by rosuvastatin treatment. Conclusion. Our data documented leukocyte recruitment prior to lipid accumulation and subsequent inhibition by rosuvastatin. The underlying mechanism seemed to involve oxidative stress and an anti-inflammatory effect on the endothelium of atheroprone vessels.
Hypertension Research | 2011
Sumihiko Hagita; Mizuko Osaka; Kentaro Shimokado; Masayuki Yoshida
Recent studies have demonstrated a potential synergistic effect of the combination of amlodipine with atorvastatin to reduce acute inflammation. The intraluminal wire injury of the mouse femoral artery induced significant leukocyte recruitment to the injured area and oxidative stress within 24 h. Administration of low-dose amlodipine (0.5 mg kg−1 per day) or atorvastatin (1 mg kg−1 per day) alone for 7 days failed to modulate leukocyte adhesion, whereas their co-administration for 7 days significantly inhibited leukocyte adhesion. Moreover, flow cytometric analysis showed that injury-induced oxidative stress and CD11b expression in three leukocyte fractions were elevated after injury and then reduced after the co-administration. Next, adoptive transfer of mononuclear cells (MNCs) was performed and MNCs were harvested from mice after wire injury exhibited adhesion to the recipient injured artery. Furthermore, the co-administration of low-dose atorvastatin and amlodipine to MNCs or the vasculature reduced the recruitment of MNCs to the injured artery. Our findings indicate that amlodipine and atorvastatin synergistically inhibit vascular inflammation. The underlying mechanisms of their effect involve, at least in part, stabilizing oxidative stress at the point of injury, suggesting the clinical efficacy of this drug combination for the treatment of vascular diseases.
Scientific Reports | 2018
Sumihiko Hagita; Maximillian A. Rogers; Tan Pham; Jennifer R. Wen; Andrew K. Mlynarchik; Masanori Aikawa; Elena Aikawa
The sorting receptor Sortilin functions in the regulation of glucose and lipid metabolism. Dysfunctional lipid uptake, storage, and metabolism contribute to several major human diseases including atherosclerosis and obesity. Sortilin associates with cardiovascular disease; however, the role of Sortilin in adipose tissue and lipid metabolism remains unclear. Here we show that in the low-density lipoprotein receptor-deficient (Ldlr−/−) atherosclerosis model, Sortilin deficiency (Sort1−/−) in female mice suppresses Niemann-Pick type C1-Like 1 (Npc1l1) mRNA levels, reduces body and white adipose tissue weight, and improves brown adipose tissue function partially via transcriptional downregulation of Krüppel-like factor 4 and Liver X receptor. Female Ldlr−/−Sort1−/− mice on a high-fat/cholesterol diet had elevated plasma Fibroblast growth factor 21 and Adiponectin, an adipokine that when reduced is associated with obesity and cardiovascular disease-related factors. Additionally, Sort1 deficiency suppressed cholesterol absorption in both female mice ex vivo intestinal tissue and human colon Caco-2 cells in a similar manner to treatment with the NPC1L1 inhibitor ezetimibe. Together our findings support a novel role of Sortilin in energy regulation and lipid homeostasis in female mice, which may be a potential therapeutic target for obesity and cardiovascular disease.
American Journal of Physiology-heart and Circulatory Physiology | 2007
Mizuko Osaka; Sumihiko Hagita; Mihoko Haraguchi; Mayumi Kajimura; Makoto Suematsu; Masayuki Yoshida
Atherosclerosis | 2016
Claudia Goettsch; Joshua D. Hutcheson; Sumihiko Hagita; Maximillian A. Rogers; Michael Creager; Tan Pham; Jung Choi; Andrew K. Mlynarchik; Brett Pieper; Mads Kjolby; Masanori Aikawa; Elena Aikawa
Bioorganic & Medicinal Chemistry Letters | 2018
Tomoaki Koshizawa; Toshiharu Morimoto; Gen Watanabe; Tomoaki Fukuda; Nao Yamasaki; Sumihiko Hagita; Yoshikazu Sawada; Ayumu Okuda; Kimiyuki Shibuya; Tadaaki Ohgiya