Sumir Panji
University of Cape Town
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sumir Panji.
Nature | 2013
Chris T. Amemiya; Jessica Alföldi; Alison P. Lee; Shaohua Fan; Hervé Philippe; Iain MacCallum; Ingo Braasch; Tereza Manousaki; Igor Schneider; Nicolas Rohner; Chris Organ; Domitille Chalopin; Jeramiah J. Smith; Mark Robinson; Rosemary A. Dorrington; Marco Gerdol; Bronwen Aken; Maria Assunta Biscotti; Marco Barucca; Denis Baurain; Aaron M. Berlin; Francesco Buonocore; Thorsten Burmester; Michael S. Campbell; Adriana Canapa; John P. Cannon; Alan Christoffels; Gianluca De Moro; Adrienne L. Edkins; Lin Fan
The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Oliver Hofmann; Otavia L. Caballero; Brian J. Stevenson; Yao Tseng Chen; Tzeela Cohen; Ramon Chua; Christopher A. Maher; Sumir Panji; Ulf Schaefer; Adele Kruger; Minna Lehvaslaiho; Piero Carninci; Yoshihide Hayashizaki; C. Victor Jongeneel; Andrew J.G. Simpson; Lloyd J. Old; Winston Hide
Cancer/Testis (CT) genes, normally expressed in germ line cells but also activated in a wide range of cancer types, often encode antigens that are immunogenic in cancer patients, and present potential for use as biomarkers and targets for immunotherapy. Using multiple in silico gene expression analysis technologies, including twice the number of expressed sequence tags used in previous studies, we have performed a comprehensive genome-wide survey of expression for a set of 153 previously described CT genes in normal and cancer expression libraries. We find that although they are generally highly expressed in testis, these genes exhibit heterogeneous gene expression profiles, allowing their classification into testis-restricted (39), testis/brain-restricted (14), and a testis-selective (85) group of genes that show additional expression in somatic tissues. The chromosomal distribution of these genes confirmed the previously observed dominance of X chromosome location, with CT-X genes being significantly more testis-restricted than non-X CT. Applying this core classification in a genome-wide survey we identified >30 CT candidate genes; 3 of them, PEPP-2, OTOA, and AKAP4, were confirmed as testis-restricted or testis-selective using RT-PCR, with variable expression frequencies observed in a panel of cancer cell lines. Our classification provides an objective ranking for potential CT genes, which is useful in guiding further identification and characterization of these potentially important diagnostic and therapeutic targets.
BMC Genomics | 2007
Brian J. Stevenson; Christian Iseli; Sumir Panji; Monique Zahn-Zabal; Winston Hide; Lloyd J. Old; Andrew J.G. Simpson; C. Victor Jongeneel
BackgroundCancer/testis (CT) genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole.ResultsTo shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes) genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes.ConclusionGiven their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.
Genome Research | 2016
Nicola Mulder; Ezekiel Adebiyi; Raouf Alami; Alia Benkahla; James Brandful; Seydou Doumbia; Dean B. Everett; Faisal M. Fadlelmola; Fatima Gaboun; Simani Gaseitsiwe; Hassan Ghazal; Scott Hazelhurst; Winston Hide; Azeddine Ibrahimi; Yasmina Jaufeerally Fakim; C. Victor Jongeneel; Fourie Joubert; Samar K. Kassim; Jonathan K. Kayondo; Judit Kumuthini; Sylvester Leonard Lyantagaye; Julie Makani; Ahmed M. Alzohairy; Daniel K. Masiga; Ahmed Moussa; Oyekanmi Nash; Odile Ouwe Missi Oukem-Boyer; Ellis Owusu-Dabo; Sumir Panji; Hugh G Patterton
The application of genomics technologies to medicine and biomedical research is increasing in popularity, made possible by new high-throughput genotyping and sequencing technologies and improved data analysis capabilities. Some of the greatest genetic diversity among humans, animals, plants, and microbiota occurs in Africa, yet genomic research outputs from the continent are limited. The Human Heredity and Health in Africa (H3Africa) initiative was established to drive the development of genomic research for human health in Africa, and through recognition of the critical role of bioinformatics in this process, spurred the establishment of H3ABioNet, a pan-African bioinformatics network for H3Africa. The limitations in bioinformatics capacity on the continent have been a major contributory factor to the lack of notable outputs in high-throughput biology research. Although pockets of high-quality bioinformatics teams have existed previously, the majority of research institutions lack experienced faculty who can train and supervise bioinformatics students. H3ABioNet aims to address this dire need, specifically in the area of human genetics and genomics, but knock-on effects are ensuring this extends to other areas of bioinformatics. Here, we describe the emergence of genomics research and the development of bioinformatics in Africa through H3ABioNet.
Briefings in Bioinformatics | 2015
Özlem Tastan Bishop; Ezekiel Adebiyi; Ahmed M. Alzohairy; Dean B. Everett; Kais Ghedira; Amel Ghouila; Judit Kumuthini; Nicola Mulder; Sumir Panji; Hugh-G. Patterton
The discipline of bioinformatics has developed rapidly since the complete sequencing of the first genomes in the 1990s. The development of many high-throughput techniques during the last decades has ensured that bioinformatics has grown into a discipline that overlaps with, and is required for, the modern practice of virtually every field in the life sciences. This has placed a scientific premium on the availability of skilled bioinformaticians, a qualification that is extremely scarce on the African continent. The reasons for this are numerous, although the absence of a skilled bioinformatician at academic institutions to initiate a training process and build sustained capacity seems to be a common African shortcoming. This dearth of bioinformatics expertise has had a knock-on effect on the establishment of many modern high-throughput projects at African institutes, including the comprehensive and systematic analysis of genomes from African populations, which are among the most genetically diverse anywhere on the planet. Recent funding initiatives from the National Institutes of Health and the Wellcome Trust are aimed at ameliorating this shortcoming. In this paper, we discuss the problems that have limited the establishment of the bioinformatics field in Africa, as well as propose specific actions that will help with the education and training of bioinformaticians on the continent. This is an absolute requirement in anticipation of a boom in high-throughput approaches to human health issues unique to data from African populations.
Journal of Experimental Zoology | 2014
Barbara Picone; Uljana Hesse; Sumir Panji; Peter van Heusden; Mario Jonas; Alan Christoffels
G-protein coupled chemosensory receptors (GPCR-CRs) aid in the perception of odors and tastes in vertebrates. So far, six GPCR-CR families have been identified that are conserved in most vertebrate species. Phylogenetic analyses indicate differing evolutionary dynamics between teleost fish and tetrapods. The coelacanth Latimeria chalumnae belongs to the lobe-finned fishes, which represent a phylogenetic link between these two groups. We searched the genome of L. chalumnae for GPCR-CRs and found that coelacanth taste receptors are more similar to those in tetrapods than in teleost fish: two coelacanth T1R2s co-segregate with the tetrapod T1R2s that recognize sweet substances, and our phylogenetic analyses indicate that the teleost T1R2s are closer related to T1R1s (umami taste receptors) than to tetrapod T1R2s. Furthermore, coelacanths are the first fish with a large repertoire of bitter taste receptors (58 T2Rs). Considering current knowledge on feeding habits of coelacanths the question arises if perception of bitter taste is the only function of these receptors. Similar to teleost fish, coelacanths have a variety of olfactory receptors (ORs) necessary for perception of water-soluble substances. However, they also have seven genes in the two tetrapod OR subfamilies predicted to recognize airborne molecules. The two coelacanth vomeronasal receptor families are larger than those in teleost fish, and similar to tetrapods and form V1R and V2R monophyletic clades. This may point to an advanced development of the vomeronasal organ as reported for lungfish. Our results show that the intermediate position of Latimeria in the phylogeny is reflected in its GPCR-CR repertoire.
Global heart | 2017
Nicola Mulder; Ezekiel Adebiyi; Marion O. Adebiyi; Seun Adeyemi; Azza Elgaili Ahmed; Rehab Ahmed; Bola Akanle; Mohamed Alibi; Don Armstrong; Shaun Aron; Efejiro Ashano; Shakuntala Baichoo; Alia Benkahla; David K. Brown; Emile R. Chimusa; Faisal M. Fadlelmola; Dare Falola; Segun Fatumo; Kais Ghedira; Amel Ghouila; Scott Hazelhurst; Itunuoluwa Isewon; Segun Jung; Samar K. Kassim; Jonathan K. Kayondo; Mamana Mbiyavanga; Ayton Meintjes; Somia Mohammed; Abayomi Mosaku; Ahmed Moussa
BACKGROUND Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNets role has evolved in response to changing needs from the consortium and the African bioinformatics community. OBJECTIVES H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. METHODS AND RESULTS Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for downstream interpretation of prioritized variants. To provide support for these and other bioinformatics queries, an online bioinformatics helpdesk backed by broad consortium expertise has been established. Further support is provided by means of various modes of bioinformatics training. CONCLUSIONS For the past 4 years, the development of infrastructure support and human capacity through H3ABioNet, have significantly contributed to the establishment of African scientific networks, data analysis facilities, and training programs. Here, we describe the infrastructure and how it has affected genomics and bioinformatics research in Africa.
Applied and Translational Genomics | 2016
Nicola Mulder; Victoria Nembaware; Adekunle D. Adekile; Kofi A. Anie; Baba Inusa; Biobele J. Brown; Andrew D. Campbell; Furahini Chinenere; Catherine Chunda-Liyoka; Vimal K. Derebail; Amy Geard; Kais Ghedira; Carol M. Hamilton; Neil A. Hanchard; Melissa Haendel; Wayne Huggins; Muntaser E. Ibrahim; Simon Jupp; Karen Kengne Kamga; Jennifer Knight-Madden; Philomène Lopez-Sall; Mamana Mbiyavanga; Deogratias Munube; Damian Nirenberg; Obiageli Nnodu Nnodu; Solomon F. Ofori-Acquah; Kwaku Ohene-Frempong; Kenneth Opap; Sumir Panji; Miriam Park
Sickle cell disease (SCD) is a debilitating single gene disorder caused by a single point mutation that results in physical deformation (i.e. sickling) of erythrocytes at reduced oxygen tensions. Up to 75% of SCD in newborns world-wide occurs in sub-Saharan Africa, where neonatal and childhood mortality from sickle cell related complications is high. While SCD research across the globe is tackling the disease on multiple fronts, advances have yet to significantly impact on the health and quality of life of SCD patients, due to lack of coordination of these disparate efforts. Ensuring data across studies is directly comparable through standardization is a necessary step towards realizing this goal. Such a standardization requires the development and implementation of a disease-specific ontology for SCD that is applicable globally. Ontology development is best achieved by bringing together experts in the domain to contribute their knowledge. The SCD community and H3ABioNet members joined forces at a recent SCD Ontology workshop to develop an ontology covering aspects of SCD under the classes: phenotype, diagnostics, therapeutics, quality of life, disease modifiers and disease stage. The aim of the workshop was for participants to contribute their expertise to development of the structure and contents of the SCD ontology. Here we describe the proceedings of the Sickle Cell Disease Ontology Workshop held in Cape Town South Africa in February 2016 and its outcomes. The objective of the workshop was to bring together experts in SCD from around the world to contribute their expertise to the development of various aspects of the SCD ontology.
PLOS Computational Biology | 2017
C. Victor Jongeneel; Ovokeraye Achinike-Oduaran; Ezekiel Adebiyi; Marion O. Adebiyi; Seun Adeyemi; Bola Akanle; Shaun Aron; Efejiro Ashano; Hocine Bendou; Gerrit Botha; Emile R. Chimusa; Ananyo Choudhury; Ravikiran Donthu; Jenny Drnevich; Oluwadamila Falola; Christopher J. Fields; Scott Hazelhurst; Liesl M. Hendry; Itunuoluwa Isewon; Radhika S. Khetani; Judit Kumuthini; Magambo Phillip Kimuda; Lerato Magosi; Liudmila Sergeevna Mainzer; Suresh Maslamoney; Mamana Mbiyavanga; Ayton Meintjes; Danny Mugutso; Phelelani T. Mpangase; Richard J. Munthali
The H3ABioNet pan-African bioinformatics network, which is funded to support the Human Heredity and Health in Africa (H3Africa) program, has developed node-assessment exercises to gauge the ability of its participating research and service groups to analyze typical genome-wide datasets being generated by H3Africa research groups. We describe a framework for the assessment of computational genomics analysis skills, which includes standard operating procedures, training and test datasets, and a process for administering the exercise. We present the experiences of 3 research groups that have taken the exercise and the impact on their ability to manage complex projects. Finally, we discuss the reasons why many H3ABioNet nodes have declined so far to participate and potential strategies to encourage them to do so.
PLOS ONE | 2018
Cherif Ben Hamda; Raphael Z Sangeda; Liberata Mwita; Ayton Meintjes; Siana Nkya; Sumir Panji; Nicola Mulder; Lamia Guizani-Tabbane; Alia Benkahla; Julie Makani; Kais Ghedira
A chronic inflammatory state to a large extent explains sickle cell disease (SCD) pathophysiology. Nonetheless, the principal dysregulated factors affecting this major pathway and their mechanisms of action still have to be fully identified and elucidated. Integrating gene expression and genome-wide association study (GWAS) data analysis represents a novel approach to refining the identification of key mediators and functions in complex diseases. Here, we performed gene expression meta-analysis of five independent publicly available microarray datasets related to homozygous SS patients with SCD to identify a consensus SCD transcriptomic profile. The meta-analysis conducted using the MetaDE R package based on combining p values (maxP approach) identified 335 differentially expressed genes (DEGs; 224 upregulated and 111 downregulated). Functional gene set enrichment revealed the importance of several metabolic pathways, of innate immune responses, erythrocyte development, and hemostasis pathways. Advanced analyses of GWAS data generated within the framework of this study by means of the atSNP R package and SIFT tool identified 60 regulatory single-nucleotide polymorphisms (rSNPs) occurring in the promoter of 20 DEGs and a deleterious SNP, affecting CAMKK2 protein function. This novel database of candidate genes, transcription factors, and rSNPs associated with SCD provides new markers that may help to identify new therapeutic targets.