Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sumit Sinha-Ray is active.

Publication


Featured researches published by Sumit Sinha-Ray.


Langmuir | 2011

Thorny devil nanotextured fibers: the way to cooling rates on the order of 1 kW/cm2.

Sumit Sinha-Ray; Yiyun Zhang; Alexander L. Yarin

In the present work high-heat-flux surfaces, which should serve at temperatures of up to 200 °C, were covered by electrospun polymer nanofiber mats with thicknesses of about 30 μm. Then, four different metals were electroplated on separate polymer mats, namely, copper, silver, nickel, and gold. As a result, copper-plated nanofiber mats took on an appearance resembling that of a small Australian thorny devil lizard (i.e., they became very rough on the nanoscale) and acquired a high thermal diffusivity. Silver-plated nanofiber mats also became very rough because of the dendritelike and cactuslike nanostructures on their surfaces. However, nickel-plated nanofibers were only partially rough and their mats incorporated large domains of smooth nickel-plated fibers, and gold-plated nanofibers were practically smooth. Drop impacts on the hot surfaces coated with copper-plated and silver-plated nanofibers revealed tremendously high values of heat removal rates of up to 0.6 kW/cm(2). Such high values of heat flux are more than an order of magnitude higher that the currently available ones and probably can be increased even more using the same technique. They open some intriguing perspectives for the cooling of high-heat-flux microelectronics and optoelectronics and for further miniaturization of such devices, especially for such applications as UAVs and UGVs.


Molecular Pharmaceutics | 2016

Long-Term Sustained Ciprofloxacin Release from PMMA and Hydrophilic Polymer Blended Nanofibers

Špela Zupančič; Sumit Sinha-Ray; Suman Sinha-Ray; Julijana Kristl; Alexander L. Yarin

Nanofibers represent an attractive novel drug delivery system for prolonged and controlled release. However, sustained release of hydrophilic drugs, like ciprofloxacin hydrochloride (CIP), from polymeric nanofibers is not an easy task. The present study investigates the effect of different hydrophobic polymers (PCL and PMMA) alone in monolithic nanofibers or with hydrophilic polymers (PVA, PEO, and chitosan) in blended nanofibers aiming to achieve sustained CIP release. CIP release from PCL nanofibers was 46% and from PMMA just 1.5% over 40 day period. Thus, PMMA holds great promise for modification of CIP release from blended nanofibers. PMMA blends with 10% PEO, PVA, or chitosan were used to electrospin nanofibers from solution in the mixture of acetic and formic acid. These nanofibers exhibited different drug-release profiles: PEO containing nanofiber mats demonstrated high burst effect, chitosan containing mats revealed very slow gradual release, and PVA containing mats yielded smaller burst effect with favorable sustained release. We have also shown that gradual sustain release of antibiotic like CIP can be additionally tuned over 18 days with various blend ratios of PMMA with PVA or chitosan reaching almost 100%. A mathematical model in agreement with the experimental observation revealed that the sustained CIP release from the blended nanofibers corresponded to the two-stage desorption process.


Molecular Pharmaceutics | 2016

Controlled Release of Ciprofloxacin from Core-Shell Nanofibers with Monolithic or Blended Core.

Špela Zupančič; Sumit Sinha-Ray; Suman Sinha-Ray; Julijana Kristl; Alexander L. Yarin

Sustained controlled drug release is one of the prominent contributions for more successful treatment outcomes in the case of several diseases. However, the incorporation of hydrophilic drugs into nanofibers, a promising novel delivery system, and achieving a long-term sustained release still pose a challenging task. In this work we demonstrated a robust method of avoiding burst release of drugs and achieving a sustained drug release from 2 to 4 weeks using core-shell nanofibers with poly(methyl methacrylate) (PMMA) shell and monolithic poly(vinyl alcohol) (PVA) core or a novel type of core-shell nanofibers with blended (PVA and PMMA) core loaded with ciprofloxacin hydrochloride (CIP). It is also shown that, for core-shell nanofibers with monolithic core, drug release can be manipulated by varying flow rate of the core PVA solution, whereas for core-shell nanofibers with blended core, drug release can be manipulated by varying the ratios between PMMA and PVA in the core. During coaxial electrospinning, when the solvent from the core evaporates in concert with the solvent from the shell, the interconnected pores spanning the core and the shell are formed. The release process is found to be desorption-limited and agrees with the two-stage desorption model. Ciprofloxacin-loaded nanofiber mats developed in the present work could be potentially used as local drug delivery systems for treatment of several medical conditions, including periodontal disease and skin, bone, and joint infections.


Langmuir | 2013

Gravitational drainage of foam films

Soumyadip Sett; Sumit Sinha-Ray; Alexander L. Yarin

Gravitational drainage from thick plane vertical soap films and hemispherical bubbles is studied experimentally and theoretically. The experiments involve microinterferometry kindred to the one used in the experiments in the Scheludko cell. The following surfactants were used in the experiments: cationic dodecyltrimethylammonium bromide (DTAB), anionic sodium dodecyl sulfate (SDS), anionic Pantene shampoo which primarily contains sodium lauryl sulfate, nonionic tetraethylene glycol monooctyl ether (C8E4), and nonionic Pluronic (P-123) surfactants at different concentrations. The theoretical results explain the drainage mechanism and are used to develop a new method of measurement of the surface elasticity and to test it on the above-mentioned surfactants.


Lab on a Chip | 2014

Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement.

Sumit Sinha-Ray; Suman Sinha-Ray; Hari Sriram; Alexander L. Yarin

This work explores the potential of nano-encapsulated phase change materials (PCMs) in applications related to microelectronics cooling. PCMs (wax or meso-erythritol) were encapsulated in carbon nanotubes (CNTs) by a method of self-sustained diffusion at room temperature and pressure. These nano-encapsulated wax nanoparticles alone allowed heat removal over a relatively wide range of temperatures (different waxes have melting temperatures in the range 40-80 °C). On the other hand, nano-encapsulated meso-erythritol nanoparticles allowed heat removal in the range 118-120 °C. The combination of these two PCMs (wax and meso-erythritol) could extend the temperature range to 40-120 °C, when both types of nanoparticles (wax and meso-erythritol intercalated) would be suspended in the same carrier fluid (an oil). The nanoparticles possess a short response time of the order of 10(-7) s. Such nano-encapsulation can also prevent the PCM from sticking to the wall. In this work, experiments with wax-intercalated CNTs, stable aqueous suspensions of CNTs with concentrations up to 3 wt% with and without nano-encapsulated wax were prepared using a surfactant sodium dodecyl benzene sulfonate (NaDDBS). These suspensions were pumped through two channels of 603 μm or 1803 μm in diameter subjected to a constant heat flux at the wall. It was found that the presence of the surfactant in CNT suspensions results in a pseudo-slip at the channel wall which enhances the flow rate at a fixed pressure drop. When aqueous solutions of the surfactant were employed (with no CNTs added), the enhanced convection alone was responsible for a ~2 °C reduction in temperature in comparison with pure water flows. When CNTs with nano-encapsulated wax were added, an additional ~1.90 °C reduction in temperature due to the PCM fusion was observed when using 3 wt% CNT suspensions. In addition, suspensions of meso-erythritol-intercalated CNTs in alpha-olefin oil were used as coolants in flows through the 1803 μm-diameter microchannel. These suspensions (1.5 wt% CNT) revealed a temperature reduction due to the PCM fusion of up to 3.2 °C, and a fusion temperature in the range 118-120 °C.


Journal of Rheology | 2013

Strong squeeze flows of yield-stress fluids: The effect of normal deviatoric stresses

D. D. Pelot; Rakesh P. Sahu; Sumit Sinha-Ray; Alexander L. Yarin

This work aims to study squeeze flows when the lubrication approximation does not necessarily hold. Strong squeeze flows are defined as the cases in which a sample is compressed by a disk with the initial speed of 40 cm/s, whereas weak squeeze flows are realized when the disk is softly released manually to avoid any impact of the sample at the beginning of compression. Strong and weak squeeze flows of yield-stress materials are studied experimentally and theoretically. In the experiments, disk-like constant-volume samples of Carbopol solutions and bentonite dispersions are compressed between two approaching disks being subjected to constant forces. In addition, experiments with shear flows in parallel-plate and vane viscometers are conducted. Using visualization through the transparent wall of the squeezing apparatus, it is demonstrated that the no-slip conditions hold. It is also demonstrated that during the fast stage of strong squeeze flows, the material response can be explained by deviatoric normal stresses, which elucidates the link of strong squeeze flows to elongational flows. The analysis of the data in the framework of the Newtonian and Herschel–Bulkley models shows that in the present case the nonlinearity of the rheological response at the fast stage of strong squeeze flows is not very significant, and a strain-rate-independent viscosity can be used as a reasonable approximation. On the other hand, at the final stage of squeeze flows, when samples spread significantly under the action of a constant squeezing force, the compressive stresses become small enough, and the dominant role is played by the yield stress. No significant signs of thixotrophy were observed. It is shown that strong squeeze flow in the squeezing apparatus is a convenient tool useful for the measurement of viscosity and the yield stress of complex soft materials.


Journal of Materials Chemistry C | 2013

Electrospinning of a blend of a liquid crystalline polymer with poly(ethylene oxide): Vectran nanofiber mats and their mechanical properties

T. Medeiros Araujo; Sumit Sinha-Ray; Alessandro Pegoretti; Alexander L. Yarin

Vectran® is a liquid crystalline polymer (LCP) with remarkable specific properties in its commercial microfiber form. Even though it has been widely studied in the last few decades, there have been no reports in the literature on Vectran nanofibers production. Due to the insufficient spinnability of Vectran, a “host–guest” method with poly(ethylene oxide) (PEO) as a host polymer is used in the present work to produce continuous and uniform nanofibers of Vectran–PEO blends. Subsequently, a heat treatment is applied and optimized to remove PEO and convert the amorphous Vectran–PEO nanofibers into more ordered and mechanically improved pure Vectran nanofibers. The conclusions are supported by scanning electron microscopy, thermal analysis, selected area electron diffraction (SAED) patterns and mechanical characterization of electrospun Vectran nanofiber mats after removal of PEO.


Nanoscale | 2017

Facile processes for producing robust, transparent, conductive platinum nanofiber mats

Seongpil An; Yong Il Kim; Sumit Sinha-Ray; Min Woo Kim; Hong Seok Jo; Mark T. Swihart; Alexander L. Yarin; Sam S. Yoon

Mechanically robust freestanding platinum (Pt) nanofiber (NF) meshes are of great interest in applications where the corrosion resistance, malleability, and stability of a pure platinum structure must be combined with high surface area for catalysis. For photoelectrochemical applications, transparent electrodes are desirable. Several 1-dimensional (1D) Pt-based materials have been developed, but energy-intensive fabrication techniques and unsatisfactory performance have limited their practical implementation in next-generation photoelectrochemical applications. Here, we introduce relatively simple yet commercially-viable methods for creating robust, free-standing PtNF mats through combined electrospinning/solution blowing and electroplating steps. The PtNFs obtained by these processes exhibited outstanding low sheet resistance (Rs) values with reasonable transparency. In addition, the PtNFs were highly bendable and stretchable. Thus, the new methods and materials presented here hold great promise for creating mechanically robust and catalytically active transparent conducting films for diverse photoelectrochemical applications.


npj Microgravity | 2017

Swing-like pool boiling on nano-textured surfaces for microgravity applications related to cooling of high-power microelectronics

Sumit Sinha-Ray; Wenshuo Zhang; Barak Stoltz; Rakesh P. Sahu; Suman Sinha-Ray; Alexander L. Yarin

Here, we demonstrate that heat removed in pool boiling from a heater mimicking high-power microelectronics could be used to facilitate a swing-like motion of the heater before being finally dissipated. This swing-like motion could be beneficial for shedding a large vapor bubble that encapsulates high-power heaters in microgravity where buoyancy force is unavailable for vapor bubble removal. The swing-like motion is propelled by vapor bubble recoil, the force which exists irrespective of gravity and buoyancy. We also demonstrate that this force could be significantly enhanced by depositing on the heater surface supersonically blown polymer nanofibers with cross-sectional diameters below 100 nm. These nanofibers provide additional nucleation sites, resulting in much more frequent bubble nucleation and departure, and thus a higher overall vapor recoil force propelling the heater motion. Such nanofibers strongly adhere to the heater surface and withstand prolonged harsh pool boiling. The measured velocity of the model swing-like heater in Novec 7300 fluid is about 1 cm/s.Cooling microelectronics with nanofibersAs microelectronics get smaller, there is an urgent need to develop efficient methods to keep them cool without extra power input. Under normal gravity, excess heat can be removed by vapor bubbles rising through a coolant. In space however, due to the lack buoyancy force, vapor bubbles remain attached to the submerged heater and prevent heat removal. Prof. Alexander Yarin, at the University of Illinois at Chicago, and his team show that in heaters mimicking high-power microelectronics, the thrust of vapor bubble release (the vapor recoil force, which exists irrespective of gravity) helps shedding merger vapor bubbles by generating a swing-like motion of the heater. Moreover, they demonstrate how nanofiber coatings can increase heat transfer by providing more bubble nucleation sites, and thus enhance the swing-like motion.


Journal of Heat Transfer-transactions of The Asme | 2015

Electrohydrodynamic Conduction Pumping-Driven Liquid Film Flow Boiling on Bare and Nanofiber-Enhanced Surfaces

Viral K. Patel; Jamal Seyed-Yagoobi; Suman Sinha-Ray; Sumit Sinha-Ray; Alexander L. Yarin

Liquid film flow boiling heat transfer driven by electrohydrodynamic (EHD) conduction pumping is experimentally studied on a surface with a novel metal-plated nanofiber-mat coating. The nanotextured surface is formed on a copper substrate covered by an electrospun polymer nanofiber mat, which is copper-plated as a postprocess. The mat has a thickness of about 30 μm and is immersed in saturated HCFC-123. The objective is to study electrowetting of the copper-plated nanofiber-enhanced surface via EHD conduction pumping mechanism for the entire liquid film flow boiling regime leading up to critical heat flux (CHF), and compare it to the bare surface without EHD-driven flow. The results show that with the combination of these two techniques, for a given superheat value, enhancement in heat flux and boiling heat transfer coefficient is as high as 555% compared to the bare surface. The results are quite promising for thermal management applications.

Collaboration


Dive into the Sumit Sinha-Ray's collaboration.

Top Co-Authors

Avatar

Alexander L. Yarin

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Suman Sinha-Ray

Indian Institute of Technology Indore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Behnam Pourdeyhimi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

A. L. Yarin

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Peter Stephan

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Tatiana Gambaryan-Roisman

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Alexander Kolbasov

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Hari Sriram

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Jamal Seyed-Yagoobi

Worcester Polytechnic Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge