Sumiti Vinayak
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sumiti Vinayak.
Nature | 2015
Sumiti Vinayak; Mattie C. Pawlowic; Adam Sateriale; Carrie F. Brooks; Caleb J. Studstill; Yael Bar-Peled; Michael J. Cipriano; Boris Striepen
Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.
PLOS Pathogens | 2010
Sumiti Vinayak; Tauqeer Alam; Tonya Mixson-Hayden; Andrea M. McCollum; Rithy Sem; Naman K. Shah; Pharath Lim; Sinuon Muth; William O. Rogers; Thierry Fandeur; John W. Barnwell; Ananias A. Escalante; Chansuda Wongsrichanalai; Frederick Ariey; Steven R. Meshnick; Venkatachalam Udhayakumar
The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions.
Antimicrobial Agents and Chemotherapy | 2004
Anwar Ahmed; Deepak Bararia; Sumiti Vinayak; Mohammed Yameen; Sukla Biswas; Vas Dev; Ashwani Kumar; Musharraf A. Ansari; Yagya D. Sharma
ABSTRACT The combination of sulfadoxine-pyrimethamine (SP) is used as a second line of therapy for the treatment of uncomplicated chloroquine-resistant Plasmodium falciparum malaria. Resistance to SP arises due to certain point mutations in the genes for the dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) enzymes of the parasite. We have analyzed these mutations in 312 field isolates of P. falciparum collected from different parts of India to assess the effects of drug pressure. The rate of mutation in the gene for DHFR was found to be higher than that in the gene for DHPS, although the latter had mutations in more alleles. There was a temporal rise in the number of isolates with double dhfr mutations and single dhps mutations, resulting in an increased total number of mutations in the loci for DHFR and DHPS combined over a 5-year period. During these 5 years, the number of isolates with drug-sensitive genotypes decreased and the number of isolates with drug-resistant genotypes (double DHFR mutations and a single DHPS mutation) increased significantly. The number of isolates with the triple mutations in each of the genes for the two enzymes (for a total of six mutations), however, remained very low, coinciding with the very low rate of SP treatment failure in the country. There was a regional bias in the mutation rate, as isolates from the northeastern region (the state of Assam) showed higher rates of mutation and more complex genotypes than isolates from the other regions. It was concluded that even though SP is prescribed as a second line of treatment in India, the mutations associated with SP resistance continue to be progressively increasing.
The Journal of Infectious Diseases | 2006
Pooja Mittra; Sumiti Vinayak; Hina Chandawat; Manoj K. Das; Neeru Singh; Sukla Biswas; Vas Dev; Ashwani Kumar; Musharraf A. Ansari; Yagya D. Sharma
BACKGROUND Effective malaria control programs require continuous monitoring of drug pressure in the field, using molecular markers. METHODS We used sequence analysis to investigate the pfcrt and pfmdr1 mutations in Indian Plasmodium falciparum isolates. To evaluate the chloroquine drug pressure in the field, isolates were collected from 5 different areas at 2 time points, with an interval of 2 years. RESULTS In 265 P. falciparum isolates, pfcrt mutations were observed at codons 72, 74, 75, 76, and 220, resulting in 8 different genotypes: SMNTS (61.89%), CIETS (12.08%), CMNKS (0.38%), CMNTA (2.64%), CMNTS (4.91%), SMNTA (0.38%), CIDTS (2.26%), and wild-type CMNKA (15.47%). During the 2-year period, there was a significant decrease in the number of isolates with the SMNTS genotype and an increase in the number of isolates with the highly chloroquine-resistant pfcrt genotype CIETS (P < .05). The N86Y mutation was less prevalent (30.13%) than the Y184F mutation (99.16%) in the pfmdr1 gene in 239 isolates, but the number of isolates with the N86Y mutation increased significantly during the 2-year period (P < .05). The number of isolates with higher total numbers of pfcrt and pfmdr1 2-loci mutations, therefore, increased significantly during this period. There was a regional bias in the mutation rate of these genes, because isolates from areas where chloroquine resistance was high had higher numbers of 2-loci mutations, and areas where chloroquine resistance was low had isolates with lower numbers of 2-loci mutations. CONCLUSION There was a temporal increase in the number of pfcrt and pfmdr1 2-loci mutations, and this led to the higher level of chloroquine resistance. This is a cause for concern for the antimalarial drug policy in India.
The Journal of Infectious Diseases | 2011
Tauqeer Alam; Dziedzom K. de Souza; Sumiti Vinayak; Sean M. Griffing; Amanda Poe; Nancy O. Duah; Anita Ghansah; Kwame Asamoa; Laurence Slutsker; Michael D. Wilson; John W. Barnwell; Venkatachalam Udhayakumar; Kwadwo A. Koram
BACKGROUND In 2005, Ghana adopted artemisinin-based combination therapy (ACT) for primary treatment of falciparum malaria. A comprehensive study of the drug-resistance-associated mutations and their genetic lineages will lead to a better understanding of the evolution of antimalarial drug resistance in this region. METHODS The pfcrt, pfmdr1, dhps, and dhfr mutations associated with chloroquine (CQ) and sulfadoxine-pyrimethamine (SP) resistance and the microsatellite loci flanking these genes were genotyped in Plasmodium falciparum isolates from Ghana. RESULTS The prevalence of mutations associated with both CQ and SP resistance was high in Ghana. However, we observed a decrease in prevalence of the pfcrt K76T mutation in northern Ghana after the change in drug policy from CQ to ACT. Analysis of genetic diversity and differentiation at microsatellite loci flanking all 4 genes indicated that they have been under strong selection, because of CQ and SP use. The triple-mutant pfcrt and dhfr alleles in Ghana were derived from Southeast Asia, whereas the double-mutant dhfr, dhps, and pfmdr1 alleles were of African lineage. CONCLUSION Because of the possible role of pfmdr1 in amodiaquine and mefloquine resistance, demonstrating selection on pfmdr1 and defining lineages of resistant alleles in an African population holds great importance.
Antimicrobial Agents and Chemotherapy | 2010
Sean M. Griffing; Luke Syphard; Sankar Sridaran; Andrea M. McCollum; Tonya Mixson-Hayden; Sumiti Vinayak; Leopoldo Villegas; John W. Barnwell; Ananias A. Escalante; Venkatachalam Udhayakumar
ABSTRACT Molecular tools are valuable for determining evolutionary history and the prevalence of drug-resistant malaria parasites. These tools have helped to predict decreased sensitivity to antimalarials and fixation of multidrug resistance genotypes in some regions. In order to assess how historical drug policies impacted Plasmodium falciparum in Venezuela, we examined molecular changes in genes associated with drug resistance. We examined pfmdr1 and pfcrt in samples from Sifontes, Venezuela, and integrated our findings with earlier work describing dhfr and dhps in these samples. We characterized pfmdr1 genotypes and copy number variation, pfcrt genotypes, and proximal microsatellites in 93 samples originating from surveillance from 2003 to 2004. Multicopy pfmdr1 was found in 12% of the samples. Two pfmdr1 alleles, Y184F/N1042D/D1246Y (37%) and Y184F/S1034C/N1042D/D1246Y (63%), were found. These alleles share ancestry, and no evidence of strong selective pressure on mutations was found. pfcrt chloroquine resistance alleles are fixed with two alleles: StctVMNT (91%) and SagtVMNT (9%). These alleles are associated with strong selection. There was also an association between pfcrt, pfmdr1, dhfr, and dhps genotypes/haplotypes. Duplication of pfmdr1 suggests a potential shift in mefloquine sensitivity in this region, which warrants further study. A bottleneck occurred in P. falciparum in Sifontes, Venezuela, and multidrug resistance genotypes are present. This population could be targeted for malaria elimination programs to prevent the possible spread of multidrug-resistant parasites.
Acta Tropica | 2003
Sumiti Vinayak; Sukla Biswas; Vas Dev; Ashwani Kumar; Musharraf A. Ansari; Yagya D. Sharma
Chloroquine-resistant Plasmodium falciparum needs to be monitored in the field for effective malaria control strategies. A point mutation K76T in the P. falciparum chloroquine resistance transporter (Pfcrt) protein has recently been proposed as a molecular marker for the faster detection of chloroquine-resistant falciparum malaria in field. We describe here the evaluation of this marker in Indian P. falciparum isolates. A total of 274 Indian P. falciparum isolates were analyzed for the K76T mutation. This mutation was detected in all the clinical isolates obtained from the in vivo chloroquine non-responders. But majority of the clinical isolates from chloroquine responders (71 of 74 patients, i.e. 96%) also harbored this mutation. The K76T mutation was indeed highly prevalent (91%) among 213 clinical isolates. There was a significant association between K76T mutation and the in vitro chloroquine response (P<0.05) but six isolates showed discordant results. In conclusion, the K76T mutation fails to differentiate majority of the chloroquine responders from that of the non-responders and thus will be of limited use in the field in India.
The Journal of Infectious Diseases | 2010
Sumiti Vinayak; Tauqeer Alam; Rithy Sem; Naman K. Shah; Augustina I. Susanti; Pharath Lim; Sinuon Muth; Jason D. Maguire; William O. Rogers; Thierry Fandeur; John W. Barnwell; Ananias A. Escalante; Chansuda Wongsrichanalai; Frederick Ariey; Steven R. Meshnick; Venkatachalam Udhayakumar
BACKGROUND The emergence of artesunate-mefloquine (AS+MQ)-resistant Plasmodium falciparum in the Thailand-Cambodia region is a major concern for malaria control. Studies indicate that copy number increase and key alleles in the pfmdr1 gene are associated with AS+MQ resistance. In the present study, we investigated evidence for a selective sweep around pfmdr1 because of the spread of adaptive mutation and/or multiple copies of this gene in the P. falciparum population in Cambodia. METHODS We characterized 13 microsatellite loci flanking (+/-99 kb) pfmdr1 in 93 single-clone P. falciparum infections, of which 31 had multiple copies and 62 had a single copy of the pfmdr1 gene. RESULTS Genetic analysis revealed no difference in the mean (+/- standard deviation) expected heterozygosity (H(e)) at loci around single (0.75+/-0.03) and multiple (0.76+/-0.04) copies of pfmdr1. Evidence of genetic hitchhiking with the selective sweep of certain haplotypes was seen around mutant (184F) pfmdr1 allele, irrespective of the copy number. There was an overall reduction of 28% in mean H(e) (+/-SD) around mutant allele (0.56+/-0.05), compared with wild-type allele (0.84+/-0.02). Significant linkage disequilibrium was also observed between the loci flanking mutant pfmdr1 allele. CONCLUSION The 184F mutant allele is under selection, whereas amplification of pfmdr1 gene in this population occurs on multiple genetic backgrounds.
Antimicrobial Agents and Chemotherapy | 2011
Tauqeer Alam; Sumiti Vinayak; Kanungnit Congpuong; Chansuda Wongsrichanalai; Wichai Satimai; Laurence Slutsker; Ananias A. Escalante; John W. Barnwell; Venkatachalam Udhayakumar
ABSTRACT The emergence and spread of drug-resistant Plasmodium falciparum have been a major impediment for the control of malaria worldwide. Earlier studies have shown that similar to chloroquine (CQ) resistance, high levels of pyrimethamine resistance in P. falciparum originated independently 4 to 5 times globally, including one origin at the Thailand-Cambodia border. In this study we describe the origins and spread of sulfadoxine-resistance-conferring dihydropteroate synthase (dhps) alleles in Thailand. The dhps mutations and flanking microsatellite loci were genotyped for P. falciparum isolates collected from 11 Thai provinces along the Burma, Cambodia, and Malaysia borders. Results indicated that resistant dhps alleles were fixed in Thailand, predominantly being the SGEGA, AGEAA, and SGNGA triple mutants and the AGKAA double mutant (mutated codons are underlined). These alleles had different geographical distributions. The SGEGA alleles were found mostly at the Burma border, while the SGNGA alleles occurred mainly at the Cambodia border and nearby provinces. Microsatellite data suggested that there were two major genetic lineages of the triple mutants in Thailand, one common for SGEGA/SGNGA alleles and another one independent for AGEAA. Importantly, the newly reported SGNGA alleles possibly originated at the Thailand-Cambodia border. All parasites in the Yala province (Malaysia border) had AGKAA alleles with almost identical flanking microsatellites haplotypes. They were also identical at putatively neutral loci on chromosomes 2 and 3, suggesting a clonal nature of the parasite population in Yala. In summary, this study suggests multiple and independent origins of resistant dhps alleles in Thailand.
PLOS ONE | 2012
Mohammad Zeeshan; Mohammad Tauqeer Alam; Sumiti Vinayak; Hema Bora; Rupesh Kumar Tyagi; Mohd. Shoeb Alam; Vandana Choudhary; Pooja Mittra; Vanshika Lumb; Praveen K. Bharti; Venkatachalam Udhayakumar; Neeru Singh; Vidhan Jain; Pushpendra Pal Singh; Yagya D. Sharma
RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (∼61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (∼59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region.