Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sun Hye Hwang is active.

Publication


Featured researches published by Sun Hye Hwang.


ACS Applied Materials & Interfaces | 2012

Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity.

Jooyoung Song; Haeyoung Kang; Choonghyeon Lee; Sun Hye Hwang; Jyongsik Jang

This paper describes the one-pot, aqueous synthesis of cationic polymer nanofibers with embedded silver nanoparticles. Poly[2-(tert-butylaminoethyl) methacrylate] (PTBAM) was used as a cationic polymer substrate to reinforce the antimicrobial activity of the embedded silver nanoparticles. Electron microscope analyses revealed that the as-synthesized nanofibers had diameters of approximately 40 nm and lengths up to about 10 μm. Additionally, silver nanoparticles of approximately 8 nm in diameter were finely embedded into the prepared nanofibers. The embedded silver nanoparticles had a lower tendency to agglomerate than colloidal silver nanoparticles of comparable size. In addition, the nanofibers with embedded silver nanoparticles exhibited excellent antibacterial performance against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Interestingly, the prepared nanofibers exhibited enhanced bactericidal performance compared with the silver-embedded poly(methyl methacrylate) (PMMA) nanofibers, presumably because of the antibacterial properties of the PTBAM substrate.


ACS Applied Materials & Interfaces | 2013

Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells.

Suim Son; Sun Hye Hwang; Chanhoi Kim; Ju Young Yun; Jyongsik Jang

SiO2/TiO2 core/shell nanoparticles (STCS-NPs) with diameters of 110, 240, and 530 nm were fabricated to investigate the influence of the size and refractive index of light-scattering particles on light-scattering properties. The optical properties of STCS-NPs were evaluated and compared with SiO2-NPs and TiO2-NPs. The structure of STCS-NPs, consisting of a low refractive index core and high refractive index shell, provides efficient light scattering. The optimized anode film with STCS-NPs had ca. 20% improved power conversion efficiency (PCE).


Journal of Materials Chemistry | 2012

Polyaniline porous counter-electrodes for high performance dye-sensitized solar cells

Sunghun Cho; Sun Hye Hwang; Chanhoi Kim; Jyongsik Jang

Porous polyaniline–camphorsulfonic acid (PANI–CSA) counter-electrodes (CEs) for dye-sensitized solar cells (DSSCs) were fabricated by secondary doping-based polymerization with different porogen decomposition. The average pore diameter was ca. 50 and 150 nm for BPO and AIBN, respectively. The increased Brunauer–Emmett–Teller (BET) surface area of porous PANI–CSA CEs facilitated facile electron exchange between the CEs and the redox electrolyte, resulting in higher electro-catalytic performance than that of Pt-coated indium-doped tin oxide (ITO) CE. The porous PANI–CSA nanostructures with increased BET surface area exhibited an equivalent incident photon-to-electron conversion efficiency (IPCE) of 68.86% and a power-conversion efficiency (PCE, η) of 6.23% compared to DSSCs containing Pt-coated ITO CE (IPCE of 68.70% and η = 6.17%). It is noteworthy that the performance of DSSCs with porous PANI–CSA CEs represented a 101.0% relative efficiency compared to Pt-coated CEs.


ACS Applied Materials & Interfaces | 2012

Designed Architecture of Multiscale Porous TiO2 Nanofibers for Dye-Sensitized Solar Cells Photoanode

Sun Hye Hwang; Chanhoi Kim; Hee Song; Suim Son; Jyongsik Jang

Multiscale porous (MSP) TiO(2) nanofibers (NFs) were fabricated using a simple electrospinning and etching process with TiO(2)/SiO(2) composite NFs for high-efficiency dye-sensitized solar cells (DSSCs). TiO(2) NFs with different pore sizes (small, large, and multiscale) were prepared using SiO(2) nanoparticles of various sizes. The surface area of the MSP TiO(2) NFs was nine times higher than that of pristine TiO(2) NFs, providing sufficient dye adsorption for light harvesting as well as efficient paths for electrolyte contact. Moreover, the one-dimensional structure provides efficient light scattering and fast electron transport. As a result, DSSCs exhibited an enhanced current density (J(sc)) of 16.3 mA cm(-2) and a high photoconversion efficiency (η) of 8.5%, greater than those of conventional photoelectrodes made of TiO(2) nanoparticles (J(sc) of 12.0 mA cm(-2) and η of 6.0 %).


ACS Applied Materials & Interfaces | 2015

Fabrication of Au@Ag Core/Shell Nanoparticles Decorated TiO2 Hollow Structure for Efficient Light-Harvesting in Dye-Sensitized Solar Cells

Juyoung Yun; Sun Hye Hwang; Jyongsik Jang

Improving the light-harvesting properties of photoanodes is promising way to enhance the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). We synthesized Au@Ag core/shell nanoparticles decorated TiO2 hollow nanoparticles (Au@Ag/TiO2 HNPs) via sol-gel reaction and chemical deposition. The Au@Ag/TiO2 HNPs exhibited multifunctions from Au@Ag core/shell NPs (Au@Ag CSNPs) and TiO2 hollow nanoparticles (TiO2 HNPs). These Au@Ag CSNPs exhibited strong and broadened localized surface plasmon resonance (LSPR), together with a large specific surface area of 129 m(2) g(-1), light scattering effect, and facile oxidation-reduction reaction of electrolyte from TiO2 HNPs, which resulted in enhancement of the light harvesting. The optimum PCE of η = 9.7% was achieved for the DSSCs using photoanode materials based on TiO2 HNPs containing Au@Ag/TiO2 HNPs (0.2 wt % Au@Ag CSNPs with respect to TiO2 HNPs), which outperformed by 24% enhancement that of conventional photoanodes formed using P25 (η = 7.8%).


ACS Nano | 2015

Enhanced Electroresponsive Performance of Double-Shell SiO2/TiO2 Hollow Nanoparticles

Seungae Lee; Jungsup Lee; Sun Hye Hwang; Juyoung Yun; Jyongsik Jang

The double-shell SiO2/TiO2 hollow nanoparticles (DS HNPs) are successfully fabricated and adopted as dispersing materials for electrorheological (ER) fluids to investigate an influence of shell structure on ER properties. The DS HNPs-based ER fluid exhibits outstanding ER performance which is 4.1-fold higher compared to that of single shell SiO2/TiO2 hollow nanoparticles (SS HNPs)-based ER fluid. The significantly improved ER property of DS HNPs-based ER fluid is ascribed to the enhanced interfacial polarization. In addition, the ER activities of DS HNPs-based ER fluids are examined depending on the particle diameter. The yield stress of DS HNPs-based ER fluids increases up to 302.4 kPa under an electric field of 3 kV mm(-1) by reducing the particle size, which is remarkable performance enough to promise sufficient probability for practical and industrial applications. The enhanced ER performance of the smaller DS HNPs is attributed to the increased surface area of large pores (30-35 nm) within the shells, resulting in a large achievable polarizability determined by dielectric constants. Furthermore, the antisedimentation property is analyzed in order to offer an additional insight into the effect of particle size on the ER fluids.


Journal of Materials Chemistry | 2014

Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells

Sun Hye Hwang; Jongmin Roh; Jungsup Lee; Jaehoon Ryu; Juyoung Yun; Jyongsik Jang

Perovskite-based solar cells have received much recent research attention for renewable-energy applications because of their high efficiency and long-term stability. Here, we report perovskite solar cells formed using a scaffold layer composed of size-controlled SiO2 nanoparticles (NPs). The infiltration of perovskite into the scaffold layer depended strongly on the size of the SiO2 NPs. We investigated the effects of scaffold layers comprised of SiO2 NPs that were 15, 30, 50, 70, and 100 nm in diameter on the properties of perovskite films. The performance of perovskite solar cells based on 50 nm diameter SiO2 NPs exhibited a current density (Jsc) of 16.4 mA cm−2, a open-circuit voltage (Voc) of 1.05 V, and a power-conversion efficiency (PCE) of 11.45%, which represent a significant improvement compared with perovskite solar cells fabricated using a TiO2 scaffold layer, where Jsc = 17.3 mA cm−2, Voc = 0.94 V, and the PCE was 10.29%.


ACS Applied Materials & Interfaces | 2014

Dual-functional CeO2:Eu3+ nanocrystals for performance-enhanced dye-sensitized solar cells.

Jongmin Roh; Sun Hye Hwang; Jyongsik Jang

Single-crystalline, octahedral CeO2:Eu3+ nanocrystals, successfully prepared using a simple hydrothermal method, were investigated to determine their photovoltaic properties in an effort to enhance the light-harvesting efficiency of dye-sensitized solar cells (DSSCs). The size of the CeO2:Eu3+ nanocrystals (300-400 nm), as well as their mirrorlike facets, significantly improved the diffuse reflectance of visible light. Excitation of the CeO2:Eu3+ nanocrystal with 330 nm ultraviolet light was re-emitted via downconversion photoluminescence (PL) from 570 to 672 nm, corresponding to the 5D0→7FJ transition in the Eu3+ ions. Downconversion PL was dominant at 590 nm and had a maximum intensity for 1 mol % Eu3+. The CeO2:Eu3+ nanocrystal-based DSSCs exhibited a power conversion efficiency of 8.36%, an increase of 14%, compared with conventional TiO2 nanoparticle-based DSSCs, because of the strong light-scattering and downconversion PL of the CeO2:Eu3+ nanocrystals.


Chemistry: A European Journal | 2014

SiO2/TiO2 Hollow Nanoparticles Decorated with Ag Nanoparticles: Enhanced Visible Light Absorption and Improved Light Scattering in Dye‐Sensitized Solar Cells

Sun Hye Hwang; Dong Hoon Shin; Juyoung Yun; Chanhoi Kim; Moonjung Choi; Jyongsik Jang

Hollow SiO2 /TiO2 nanoparticles decorated with Ag nanoparticles (NPs) of controlled size (Ag@HNPs) were fabricated in order to enhance visible-light absorption and improve light scattering in dye-sensitized solar cells (DSSCs). They exhibited localized surface plasmon resonance (LSPR) and the LSPR effects were significantly influenced by the size of the Ag NPs. The absorption peak of the LSPR band dramatically increased with increasing Ag NP size. The LSPR of the large Ag NPs mainly increased the light absorption at short wavelengths, whereas the scattering from the SiO2 /TiO2 HNPs improved the light absorption at long wavelengths. This enabled the working electrode to use the full solar spectrum. Furthermore, the SiO2 layer thickness was adjusted to maximize the LSPR from the Ag NPs and avoid corrosion of the Ag NPs by the electrolyte. Importantly, the power conversion efficiency (PCE) increased from 7.1 % with purely TiO2 -based DSSCs to 8.1 % with HNP-based DSSCs, which is an approximately 12 % enhancement and can be attributed to greater light scattering. Furthermore, the PCEs of Ag@HNP-based DSSCs were 11 % higher (8.1 vs. 9.0 %) than the bare-HNP-based DSSCs, which can be attributed to LSPR. Together, the PCE of Ag@HNP-based DSSCs improved by a total of 27 %, from 7.1 to 9.0 %, due to these two effects. This comparative research will offer guidance in the design of multifunctional nanomaterials and the optimization of solar-cell performance.


Langmuir | 2012

Characterizing size and porosity of hollow nanoparticles: SAXS, SANS, TEM, DLS, and adsorption isotherms compared.

Zhi Hong Chen; Chanhoi Kim; Xiangbing Zeng; Sun Hye Hwang; Jyongsik Jang; Goran Ungar

A combination of experimental methods, including transmission and grazing incidence small-angle X-ray scattering (SAXS and GISAXS), small-angle neutron scattering (SANS), transmission electron microscopy (TEM), dynamic light scattering (DLS), and N(2) adsorption-desorption isotherms, was used to characterize SiO(2)/TiO(2) hollow nanoparticles (HNPs) of sizes between 25 and 100 nm. In the analysis of SAXS, SANS, and GISAXS data, the decoupling approximation and the Percus-Yevick structure factor approximation were used. Brunauer-Emmett-Teller, t-plot, and a spherical pore model based on Kelvin equation were applied in the treatment of N(2) isotherms. Extracted parameters from the scattering and TEM methods are the average outer and inner diameters and polydispersity. Good agreement was achieved between different methods for these extracted parameters. Merits, advantages, and disadvantages of the different methods are discussed. Furthermore, the combination of these methods provided us with information on the porosity of the shells of HNPs and the size of intrawall pores, which are critical to the applications of HNPs as drug delivery vehicles and catalyst supports.

Collaboration


Dive into the Sun Hye Hwang's collaboration.

Top Co-Authors

Avatar

Jyongsik Jang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Chanhoi Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Juyoung Yun

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jongmin Roh

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jungsup Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hee Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Goran Ungar

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jooyoung Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Suim Son

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge