Sun-Kyeong Lee
University of Connecticut Health Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sun-Kyeong Lee.
Nature Medicine | 2006
Seoung Hoon Lee; Jaerang Rho; Daewon Jeong; Jai Yoon Sul; Tae Soo Kim; Nacksung Kim; Ju Seob Kang; Takeshi Miyamoto; Toshio Suda; Sun-Kyeong Lee; Robert J. Pignolo; Boguslawa Koczon-Jaremko; Joseph A. Lorenzo; Yongwon Choi
Matrix-producing osteoblasts and bone-resorbing osteoclasts maintain bone homeostasis. Osteoclasts are multinucleated, giant cells of hematopoietic origin formed by the fusion of mononuclear pre-osteoclasts derived from myeloid cells. Fusion-mediated giant cell formation is critical for osteoclast maturation; without it, bone resorption is inefficient. To understand how osteoclasts differ from other myeloid lineage cells, we previously compared global mRNA expression patterns in these cells and identified genes of unknown function predominantly expressed in osteoclasts, one of which is the d2 isoform of vacuolar (H+) ATPase (v-ATPase) V0 domain (Atp6v0d2). Here we show that inactivation of Atp6v0d2 in mice results in markedly increased bone mass due to defective osteoclasts and enhanced bone formation. Atp6v0d2 deficiency did not affect differentiation or the v-ATPase activity of osteoclasts. Rather, Atp6v0d2 was required for efficient pre-osteoclast fusion. Increased bone formation was probably due to osteoblast-extrinsic factors, as Atp6v02 was not expressed in osteoblasts and their differentiation ex vivo was not altered in the absence of Atp6v02. Our results identify Atp6v0d2 as a regulator of osteoclast fusion and bone formation, and provide genetic data showing that it is possible to simultaneously inhibit osteoclast maturation and stimulate bone formation by therapeutically targeting the function of a single gene.
Journal of Experimental Medicine | 2005
Nacksung Kim; Yuho Kadono; Masamichi Takami; Junwon Lee; Seoung Hoon Lee; Fumihiko Okada; Jung Ha Kim; Takashi Kobayashi; Paul R. Odgren; Hiroyasu Nakano; Wen-Chen Yeh; Sun-Kyeong Lee; Joseph A. Lorenzo; Yongwon Choi
Osteoclasts are derived from myeloid lineage cells, and their differentiation is supported by various osteotropic factors, including the tumor necrosis factor (TNF) family member TNF-related activation-induced cytokine (TRANCE). Genetic deletion of TRANCE or its receptor, receptor activator of nuclear factor κB (RANK), results in severely osteopetrotic mice with no osteoclasts in their bones. TNF receptor-associated factor (TRAF) 6 is a key signaling adaptor for RANK, and its deficiency leads to similar osteopetrosis. Hence, the current paradigm holds that TRANCE–RANK interaction and subsequent signaling via TRAF6 are essential for the generation of functional osteoclasts. Surprisingly, we show that hematopoietic precursors from TRANCE-, RANK-, or TRAF6-null mice can become osteoclasts in vitro when they are stimulated with TNF-α in the presence of cofactors such as TGF-β. We provide direct evidence against the current paradigm that the TRANCE–RANK–TRAF6 pathway is essential for osteoclast differentiation and suggest the potential existence of alternative routes for osteoclast differentiation.
Journal of Bone and Mineral Research | 2005
Claire Jacquin; Diane E Gran; Sun-Kyeong Lee; Joseph A. Lorenzo; Hector L. Aguila
Murine BM was fractionated using a series of hematopoietic markers to characterize its osteoclast progenitor populations. We found that the early osteoclastogenic activity in total BM was recapitulated by a population of cells contained within the CD11b−/low CD45R−CD3−CD115high fraction.
Bone | 1998
Marja M. Hurley; Sun-Kyeong Lee; Lawrence G. Raisz; P Bernecker; Joseph A. Lorenzo
We determined the effect of basic fibroblast growth factor (bFGF) on osteoclast-like cell (OCL) formation in bone marrow cultures using C57BL/6 mice. Cells were cultured for 7 days with or without bFGF at various concentrations or 10(-8) mol/L 1,25(OH)2 vitamin D3 [1,25(OH)2D3]. bFGF dose-dependently increased OCL formation per well (10(-10) mol/ L = 40 +/- 2; 10(-9) mol/L = 146 +/- 13; 10(-8) mol/L = 156 +/- 12) compared with control (< 7 per well). The effects of bFGF at 10(-9) and 10(-8) mol/L were similar to that of 10(-8) mol/L 1,25(OH)2D3 (154 +/- 11 per well). OCLs formed by bFGF were multinuclear, tartrate-resistant acid phosphatase (TRAP)-positive, expressed calcitonin receptors, and formed characteristic resorption pits. We also determined whether bFGF enhanced OCL formation during the early proliferative or late differentiating phases of the cultures. When bFGF (10(-8) mol/L) was added only on days 1-2 or days 3-4 of 6 day cultures, there was a significant increase in OCL formation. In contrast, when bFGF was added only on days 5-6 few OCLs formed. Addition of bFGF at days 1-6 or days 1-2 and days 5-6 caused similar increases in OCL formation, which were greater than OCL formation induced by treatment for days 1-2 or days 1-4. We examined the production of prostaglandin E2 (PGE2) in the cultures because bFGF is a potent stimulator of PGE2 synthesis in bone, and PGE2 stimulates OCL formation. bFGF treatment significantly increased PGE2 levels in 7 day cultures (controls = 1.4 +/- 0.1 nmol/L, 10(-8) mol/L bFGF = 132.5 +/- 0.7 nmol/L). In addition, treatment of marrow cultures with the prostaglandin synthesis inhibitors, indomethacin or NS-398 (both at 10(-6) mol/L), completely blocked bFGF-induced OCL formation. We conclude that bFGF stimulates OCL formation in C57BL/6 bone marrow cultures by mechanisms that require prostaglandin synthesis. This pathway is likely to be one mechanism by which bFGF stimulates resorption.
Journal of Bone and Mineral Research | 2006
Sun-Kyeong Lee; Yuho Kadono; Fumihiko Okada; Claire Jacquin; Boguslawa Koczon-Jaremko; Gloria Gronowicz; Douglas J. Adams; Hector L. Aguila; Yongwon Choi; Joseph A. Lorenzo
We examined OVX‐induced bone loss in three TLD mouse models. In TLD mice, OVX caused trabecular bone loss equivalent to that of WT. In contrast, cortical bone loss with OVX was variable. We conclude that T lymphocytes do not influence OVX‐induced trabecular bone loss.
Journal of Immunology | 2000
Danka Grčević; Sun-Kyeong Lee; Ana Marušić; Joseph A. Lorenzo
To investigate the role of T lymphocytes in osteoclastogenesis, we performed in vivo depletion of CD4 and/or CD8 T lymphocyte subsets and evaluated in vitro osteoclast-like cell (OCL) formation. T lymphocyte depletion (TLD) with mAbs was confirmed 24 h later by flow cytometry. OCL formation was stimulated with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) in bone marrow and with recombinant mouse (rm) receptor activator of NF-κB ligand (RANK-L) and rmM-CSF in bone marrow and spleen cell cultures. OCL formation was up to 2-fold greater in 1,25-(OH)2D3-stimulated bone marrow cultures from TLD mice than in those from intact mice. In contrast, TLD did not alter OCL formation in bone marrow or spleen cell cultures that were stimulated with rmRANK-L and rmM-CSF. The effects of TLD seemed to be mediated by enhanced PG synthesis, because the PGE2 concentration in the medium of 1,25-(OH)2D3-stimulated bone marrow cultures from TLD mice was 5-fold higher than that in cultures from intact mice, and indomethacin treatment abolished the stimulatory effect of TLD on OCL formation. There was a 2-fold increase in RANK-L expression and an almost complete suppression of osteoprotegerin expression in 1,25-(OH)2D3-stimulated bone marrow cultures from TLD mice compared with those from intact mice. Although there was a small (20%) increase in IL-1α expression in 1,25-(OH)2D3-stimulated bone marrow cultures from TLD mice, TLD in mice lacking type I IL-1R and wild-type mice produced similar effects on OCL formation. Our data demonstrate that TLD up-regulates OCL formation in vitro by increasing PG production, which, in turn, produces reciprocal changes in RANK-L and osteoprotegerin expression. These results suggest that T lymphocytes influence osteoclastogenesis by altering bone marrow stromal cell function.
Bone | 2002
Sun-Kyeong Lee; Joseph A. Lorenzo
Parathyroid hormone (PTH) stimulates receptor activator of nuclear factor-kappaB ligand (RANKL) mRNA and inhibits osteoprotegerin (OPG) mRNA expression in murine bone marrow cultures. To understand the mechanisms influencing these responses, we investigated the role of the protein kinase A (PKA) and protein kinase C (PKC) pathways in the regulation of RANKL and OPG mRNA expression in murine bone marrow cultures. Murine bone marrow cells were stimulated with bovine PTH(1-34) and (1-34) amide, which activate both pathways; PTH(3-34), which more selectively activates the PKC and calcium pathways; and human PTH (1-31), which stimulates adenylyl cyclase, but not protein kinase C. We also examined agents that more directly activate either the PKA pathway (forskolin [FSK] and 8-bromo cAMP [8-Br-cAMP]) or the PKC pathway (phorbol 12-myristate 13-acetate [PMA]) in murine bone marrow cultures. After 1 h, RANKL mRNA expression was stimulated to a similar degree by agents that activate either or both the PKA and PKC pathways. However, this effect was sustained for 24 h only with agents that stimulated PKA. OPG mRNA expression was inhibited by all agents that stimulated PKA at 6 h. In contrast, PKC-specific stimulators [PMA and bPTH(3-34)] had no effect on OPG regulation in this culture system. To determine the involvement of the PKC signaling pathway in responses of RANKL, bone marrow cells were pretreated with PMA for 24 h and then treated with PTH(1-34) or FSK for 2 h. PMA pretreatment did not alter the ability of PTH or FSK to stimulate RANKL or inhibit OPG mRNA expression. Treatment of cells with H-89, a PKA inhibitor, significantly reduced the ability of PTH and FSK to induce RANKL and inhibit OPG mRNA expression. Calphostin C, a PKC inhibitor, significantly reduced PMA-stimulated RANKL mRNA expression without altering PTH- or FSK-mediated effects on RANKL or OPG mRNA. Cycloheximide, an inhibitor for protein synthesis, inhibited PTH-stimulated RANKL mRNA expression by 60% without altering the effect of PTH on OPG mRNA expression. To examine the involvement of prostaglandin in PMA-mediated responses, cells were treated with indomethacin, a nonspecific prostaglandin G/H synthase (PGHS) inhibitor, or NS-398, a selective inhibitor of PGHS-2. Neither PGHS inhibitor altered PMA-induced effects on RANKL and OPG mRNA expression. These results demonstrate that the PKA pathway is predominantly involved in the effects of PTH on RANKL mRNA expression in murine bone marrow cultures, but there is also a PKC-mediated response, which is not sustained. Inhibition of OPG by PTH appears to be a selective PKA response.
Current Opinion in Rheumatology | 2006
Sun-Kyeong Lee; Joseph A. Lorenzo
Purpose of reviewThe osteoclast is the principal bone-resorbing cell. Because of its unique ability to efficiently remove both the mineral and the organic matrix of bone, the osteoclast is an important element of the homeostatic mechanisms that maintain skeletal integrity and serum calcium levels. Over the past 30 years, a number of immune cell modulators have been shown to have effects on osteoclast formation and function. This review will briefly summarize the roles that cytokines have in osteoclast regulation. Recent findingsA large number of cytokines have been shown to regulate osteoclast formation and function. In addition, a number of additional cytokines are now known to have a major influence on the ability of osteoclasts to resorb bone. Interactions of the immune system with bone, which has been recently labeled ‘osteoimmunology’, appear to be mediated mainly by cytokine signals. Cytokines are known to regulate many of the responses of bone to inflammatory conditions; however, they also may regulate physiologic responses of bone. SummaryIn the future it is hoped that therapies that target cytokine actions may be used to reduce the effects of inflammatory diseases on bone, as well as to regulate normal bone physiology.
Journal of Bone and Mineral Research | 2006
Sun-Kyeong Lee; Judith Kalinowski; Claire Jacquin; Douglas J. Adams; Gloria Gronowicz; Joseph A. Lorenzo
IL‐7 is produced by stromal cells in bone marrow and is a major regulator of B and T lymphopoiesis. It is also a direct inhibitor of osteoclastogenesis in vitro. In this study we show that IL‐7–deficient mice have increased OC and decreased trabecular bone volume compared with WT mice but mimic WT mice in the amount of trabecular but not cortical bone lost after ovariectomy.
Immunological Reviews | 2005
Sun-Kyeong Lee; Charles D. Surh
Summary: Initially defined as a B‐cell growth factor, the pleiotropic nature of interleukin‐7 (IL‐7) has increasingly become appreciated. Besides its well‐known roles in B‐ and T‐cell lymphopoiesis, IL‐7 is now known to regulate the homeostasis of both mature T cells and bone cells. In bone, the precise nature of how IL‐7 affects osteoclasts and osteoblasts is controversial, since it has a variety of actions in different target cells. These activities are gender‐specific and are dependent on whether IL‐7 is delivered systemically or locally. In mature T cells, IL‐7 is essential for the survival of nearly all subsets. Naïve T cells are also dependent on IL‐7 for survival and homeostatic proliferation in response to lymphopenia. In addition, IL‐7 plays a role in the survival of memory CD8+ cells, and at high concentrations, it can compensate for the absence of IL‐15. The role of IL‐7 on memory CD4+ cells remains controversial and has yet to be firmly established.