Sunao Iyoda
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sunao Iyoda.
Journal of Clinical Microbiology | 2004
Claudia Toma; Estela Martínez Espinosa; Tianyan Song; Elizabeth Miliwebsky; Isabel Chinen; Sunao Iyoda; Masaaki Iwanaga; Marta Rivas
ABSTRACT The distribution of eight putative adhesins that are not encoded in the locus for enterocyte effacement (LEE) in 139 Shiga toxin-producing Escherichia coli (STEC) of different serotypes was investigated by PCR. Five of the adhesins (Iha, Efa1, LPFO157/OI-141, LPFO157/OI-154, and LPFO113) are encoded in regions corresponding to genomic O islands of E. coli EDL933, while the other three adhesins have been reported to be encoded in the STEC megaplasmid of various serotypes (ToxB [O157:H7], Saa [O113:H21], and Sfp [O157:NM]). STEC strains were isolated from humans (n = 54), animals (n = 52), and food (n = 33). They were classified into five seropathotypes (A through E) based on the reported occurrence of STEC serotypes in human disease, in outbreaks, and in the hemolytic-uremic syndrome (M. A. Karmali, M. Mascarenhas, S. Shen, K. Ziebell, S. Johnson, R. Reid-Smith, J. Isaac-Renton, C. Clark, K. Rahn, and J. B. Kaper, J. Clin. Microbiol. 41:4930-4940, 2003). The most prevalent adhesin was that encoded by the iha gene (91%; 127 of 139 strains), which was distributed in all seropathotypes. toxB and efa1 were present mainly in strains of seropathotypes A and B, which were LEE positive. saa was present only in strains of seropathotypes C, D, and E, which were LEE negative. Two fimbrial genes, lpfAO157/OI-141 and lpfAO157/OI-154, were strongly associated with seropathotype A. The fimbrial gene lpfAO113 was present in all seropathotypes except for seropathotype A, while sfpA was not present in any of the strains studied. The distribution of STEC adhesins depends mainly on serotypes and not on the source of isolation. Seropathotype A, which is associated with severe disease and frequently is involved in outbreaks, possesses a unique adhesin profile which is not present in the other seropathotypes. The wide distribution of iha in STEC strains suggested that it could be a candidate for vaccine development.
DNA Research | 2015
Atsushi Iguchi; Sunao Iyoda; Taisei Kikuchi; Yoshitoshi Ogura; Keisuke Katsura; Makoto Ohnishi; Tetsuya Hayashi; Nicholas R. Thomson
The O antigen constitutes the outermost part of the lipopolysaccharide layer in Gram-negative bacteria. The chemical composition and structure of the O antigen show high levels of variation even within a single species revealing itself as serological diversity. Here, we present a complete sequence set for the O-antigen biosynthesis gene clusters (O-AGCs) from all 184 recognized Escherichia coli O serogroups. By comparing these sequences, we identified 161 well-defined O-AGCs. Based on the wzx/wzy or wzm/wzt gene sequences, in addition to 145 singletons, 37 serogroups were placed into 16 groups. Furthermore, phylogenetic analysis of all the E. coli O-serogroup reference strains revealed that the nearly one-quarter of the 184 serogroups were found in the ST10 lineage, which may have a unique genetic background allowing a more successful exchange of O-AGCs. Our data provide a complete view of the genetic diversity of O-AGCs in E. coli showing a stronger association between host phylogenetic lineage and O-serogroup diversification than previously recognized. These data will be a valuable basis for developing a systematic molecular O-typing scheme that will allow traditional typing approaches to be linked to genomic exploration of E. coli diversity.
DNA Research | 2008
Kenshiro Oshima; Hidehiro Toh; Yoshitoshi Ogura; Hiroyuki Sasamoto; Hidetoshi Morita; Sang Hee Park; Tadasuke Ooka; Sunao Iyoda; Todd D. Taylor; Tetsuya Hayashi; Kikuji Itoh; Masahira Hattori
We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat.
Microbiology | 1999
Tadayoshi Ikebe; Sunao Iyoda; Kazuhiro Kutsukake
The fliA gene encodes the flagellum-specific sigma factor sigma28 In Salmonella typhimurium. The transcription in vivo and in vitro of this gene was analysed and it was found that there are two promoters for the expression of this gene. One is a class 2 promoter which is recognized by sigma70-RNA polymerase in the presence of the FlhD and FlhC activator proteins. The other is a class 3 promoter which is recognized by sigma28-RNA polymerase. Therefore, the fliA operon is under dual positive control from FlhD/FlhC and from FliA itself. The nucleotide sequence downstream of the fliA gene was determined. The sequence contains two ORFs following the fliA gene. On the basis of their sequence homology, it is concluded that these two correspond to the fliZ and fliY genes of Escherichia coil. Northern blot analysis revealed that the fliZ gene is transcribed from the fliA promoters, whereas the fliY gene is transcribed from both the fliA promoters and its own FlhD/FlhC-independent promoter. A fliZ-disruption mutant was constructed by inserting a kanamycin-resistance gene cassette into the fliZ gene on the chromosome. The mutant showed poor motility, and introduction of a fliZ+ plasmid into this mutant restored the wildtype level of motility. These results suggest that the fliZ gene may be required for expression of maximal motility.
Journal of Bacteriology | 2010
Hidehiro Toh; Kenshiro Oshima; Atsushi Toyoda; Yoshitoshi Ogura; Tadasuke Ooka; Hiroyuki Sasamoto; Sang Hee Park; Sunao Iyoda; Ken Kurokawa; Hidetoshi Morita; Kikuji Itoh; Todd D. Taylor; Tetsuya Hayashi; Masahira Hattori
Escherichia coli SE15 (O150:H5) is a human commensal bacterium recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B2, which includes the majority of extraintestinal pathogenic E. coli. Here, we report the finished and annotated genome sequence of this organism.
Journal of Bacteriology | 2008
Takehito Saitoh; Sunao Iyoda; Shouji Yamamoto; Yan Lu; Ken Shimuta; Makoto Ohnishi; Jun Terajima; Haruo Watanabe
The pathogenicity island termed locus of enterocyte effacement (LEE) encodes a type 3 protein secretion system, whose function is required for full virulence of enterohemorrhagic Escherichia coli (EHEC). GrlR and GrlA are LEE-encoded negative and positive regulators, respectively, for controlling transcription of the ler gene, which encodes a central activator of LEE gene expression. We previously reported that the GrlR-GrlA regulatory system controls not only the LEE genes but also flagellar gene expression in EHEC (S. Iyoda et al., J. Bacteriol. 188:5682-5692, 2006). In order to further explore virulence-related genes under the control of the GrlR-GrlA regulatory system, we characterized a grlR-deleted EHEC O157 strain, which was found to have high and low levels of expression of LEE and flagellar genes, respectively. We report here that the grlR deletion significantly induced enterohemolysin (Ehx) activity of EHEC O157 on plates containing defibrinated sheep erythrocytes. Ehx levels were not induced in the grlR grlA double mutant strain but increased markedly by overexpression of GrlA even in the ler mutant, indicating that GrlA is responsible for this regulation. Ehx of the EHEC O157 Sakai strain is encoded by the ehxCABD genes, which are carried on the large plasmid pO157. The expression of ehxC fused with FLAG tag or a promoterless lacZ gene on pO157 was significantly induced under conditions in which GrlA was overproduced. These results together suggest that GrlA acts as a positive regulator for the ehx transcription in EHEC.
Journal of Clinical Microbiology | 2015
Atsushi Iguchi; Sunao Iyoda; Kazuko Seto; Tomoko Morita-Ishihara; Flemming Scheutz; Makoto Ohnishi
ABSTRACT The O serogrouping of pathogenic Escherichia coli is a standard method for subtyping strains for epidemiological studies and enhancing phylogenetic studies. In particular, the identification of strains of the same O serogroup is essential in outbreak investigations and surveillance. In a previous study, we analyzed the O-antigen biosynthesis gene cluster in all known E. coli O serogroups (A. Iguchi et al., DNA Res, 22:101–107, 2015, http://dx.doi.org/10.1093/dnares/dsu043). Based on those results, we have arranged 162 PCR primer pairs for the identification or classification of O serogroups. Of these, 147 pairs were used to identify 147 individual O serogroups with unique O-antigen biosynthesis genes, and the other 15 pairs were used to identify 15 groups of strains (Gp1 to Gp15). Each of these groups consisted of strains with identical or very similar O-antigen biosynthesis genes, and the groups represented a total of 35 individual O serogroups. We then used the 162 primer pairs to create 20 multiplex PCR sets. Each set contained six to nine primer pairs that amplify products of markedly different sizes. This genetic methodology (E. coli O-genotyping PCR) allowed for comprehensive, rapid, and low-cost typing. Validation of the PCR system using O-serogroup references and wild strains showed that the correct O serogroups were specifically and accurately identified for 100% (182/182) and 90.8% (522/575) of references and wild strains, respectively. The PCR-based system reported here might be a promising tool for the subtyping of E. coli strains for epidemiological studies as well as for the surveillance of pathogenic E. coli during outbreaks.
Microbiology and Immunology | 1999
Sunao Iyoda; Akihito Wada; Jeniffer Weller; Susan J. A. Flood; Edgar Schreiber; Bill Tucker; Haruo Watanabe
The amplified fragment‐length polymorphism (AFLPTM) technique is based on the selective PCR amplification of restriction fragments. We investigated the utility of AFLP in the molecular subtyping of enterohemorrhagic Escherichia coli serotype O157:H7 isolates. We analyzed a total of 46 isolates of E. coli O157:H7 along with other serotypes, O26:H11, O114:H19 and O119:NT. Isolates of E. coli O157:H7 derived from the same outbreak showed an identical AFLP‐banding pattern and were subtyped into the same group, giving results almost consistent with those of a pulsed‐field gel electrophoresis (PFGE) study, while other serotypes showed clearly different patterns from those of E. coli O157:H7. These results suggest that the AFLP technique has potential as an alternative tool for the molecular epidemiology of E. coli O157:H7.
BMC Microbiology | 2009
Ken Shimuta; Makoto Ohnishi; Sunao Iyoda; Naomasa Gotoh; Nobuo Koizumi; Haruo Watanabe
BackgroundSerratia marcescens is a gram-negative bacterium and often causes nosocomial infections. There have been few studies of the virulence factors of this bacterium. The only S. marcescens hemolytic and cytotoxic factor reported, thus far, is the hemolysin ShlA.ResultsAn S. marcescens shlAB deletion mutant was constructed and shown to have no contact hemolytic activity. However, the deletion mutant retained hemolytic activity on human blood agar plates, indicating the presence of another S. marcescens hemolytic factor. Functional cloning of S. marcescens identified a phospholipase A (PhlA) with hemolytic activity on human blood agar plates. A phlAB deletion mutant lost hemolytic activity on human blood agar plates. Purified recombinant PhlA hydrolyzed several types of phospholipids and exhibited phospholipase A1 (PLA1), but not phospholipase A2 (PLA2), activity. The cytotoxic and hemolytic activities of PhlA both required phospholipids as substrates.ConclusionWe have shown that the S. marcescens phlA gene produces hemolysis on human blood agar plates. PhlA induces destabilization of target cell membranes in the presence of phospholipids. Our results indicated that the lysophospholipids produced by PhlA affected cell membranes resulting in hemolysis and cell death.
Journal of Clinical Microbiology | 2014
Masanori Watahiki; Junko Isobe; Keiko Kimata; Tomoko Shima; Jun-ichi Kanatani; Miwako Shimizu; Akihiro Nagata; Keiko Kawakami; Mikiko Yamada; Hidemasa Izumiya; Sunao Iyoda; Tomoko Morita-Ishihara; Jiro Mitobe; Jun Terajima; Makoto Ohnishi; Tetsutaro Sata
ABSTRACT In April and May 2011, there was a serious food-poisoning outbreak in Japan caused by enterohemorrhagic Escherichia coli (EHEC) strains O111:H8 and O157:H7 from raw beef dishes at branches of a barbecue restaurant. This outbreak involved 181 infected patients, including 34 hemolytic-uremic syndrome (HUS) cases (19%). Among the 34 HUS patients, 21 developed acute encephalopathy (AE) and 5 died. Patient stool specimens yielded E. coli O111 and O157 strains. We also detected both EHEC O111 stx 2 and stx-negative E. coli O111 strains in a stock of meat block from the restaurant. Pulsed-field gel electrophoresis (PFGE) and multilocus variable-number tandem-repeat analysis (MLVA) showed that the stx-negative E. coli O111 isolates were closely related to EHEC O111 stx 2 isolates. Although the EHEC O157 strains had diverse stx gene profiles (stx 1, stx 2, and stx 1 stx 2), the PFGE and MLVA analyses indicated that these isolates originated from a single clone. Deletion of the Stx2-converting prophage from the EHEC O111 stx 2 isolates was frequently observed during in vitro growth, suggesting that strain conversion from an EHEC O111 stx 2 to an stx-negative strain may have occurred during infection.