Sundararajan Natarajan
Indian Institute of Technology Madras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sundararajan Natarajan.
Composite Structures | 2013
Navid Valizadeh; Sundararajan Natarajan; O. A. González-Estrada; Timon Rabczuk; Tinh Quoc Bui; Stéphane Bordas
In this paper, a non-uniform rational B-spline based iso-geometric finite element method is used to study the static and dynamic characteristics of functionally graded material (FGM) plates. The material properties are assumed to be graded only in the thickness direction and the effective properties are computed either using the rule of mixtures or by Mori–Tanaka homogenization scheme. The plate kinematics is based on the first order shear deformation plate theory (FSDT). The shear correction factors are evaluated employing the energy equivalence principle and a simple modification to the shear correction factor is presented to alleviate shear locking. Static bending, mechanical and thermal buckling, linear free flexural vibration and supersonic flutter analysis of FGM plates are numerically studied. The accuracy of the present formulation is validated against available three-dimensional solutions. A detailed numerical study is carried out to examine the influence of the gradient index, the plate aspect ratio and the plate thickness on the global response of functionally graded material plates.
Finite Elements in Analysis and Design | 2012
Sundararajan Natarajan; Ganapathi Manickam
In this paper, the bending and the free flexural vibration behaviour of sandwich functionally graded material (FGM) plates are investigated using QUAD-8 shear flexible element developed based on higher order structural theory. This theory accounts for the realistic variation of the displacements through the thickness. The governing equations obtained here are solved for static analysis considering two types of sandwich FGM plates, viz., homogeneous face sheets with FGM core and FGM face sheets with homogeneous hard core. The in-plane and rotary inertia terms are considered for vibration studies. The accuracy of the present formulation is tested considering the problems for which three-dimensional elasticity solutions are available. A detailed numerical study is carried out based on various higher-order models to examine the influence of the gradient index and the plate aspect ratio on the global/local response of different sandwich FGM plates.
International Journal for Numerical Methods in Engineering | 2010
Sundararajan Natarajan; D. Roy Mahapatra; Stéphane Bordas
Partition of unity methods, such as the extended finite element method, allows discontinuities to be simulated independently of the mesh (Int. J. Numer. Meth. Engng. 1999; 45:601-620). This eliminates the need for the mesh to be aligned with the discontinuity or cumbersome re-meshing, as the discontinuity evolves. However, to compute the stiffness matrix of the elements intersected by the discontinuity, a subdivision of the elements into quadrature subcells aligned with the discontinuity is commonly adopted. In this paper, we use a simple integration technique, proposed for polygonal domains (Int. J. Nuttier Meth. Engng 2009; 80(1):103-134. DOI: 10.1002/nme.2589) to suppress the need for element subdivision. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics and a multi-material problem show that the proposed method yields accurate results. Owing to its simplicity, the proposed integration technique can be easily integrated in any existing code. Copyright (C) 2010 John Wiley & Sons, Ltd.
Composite Structures | 2011
Sundararajan Natarajan; P. M. Baiz; Stéphane Bordas; Timon Rabczuk; Pierre Kerfriden
In this paper, the linear free flexural vibration of cracked functionally graded material plates is studied using the extended finite element method. A 4-noded quadrilateral plate bending element based on field and edge consistency requirement with 20 degrees of freedom per element is used for this study. The natural frequencies and mode shapes of simply supported and clamped square and rectangular plates are computed as a function of gradient index, crack length, crack orientation and crack location. The effect of thickness and influence of multiple cracks is also studied.
International Journal for Numerical Methods in Engineering | 2009
Stéphane Bordas; Sundararajan Natarajan
This letter aims at resolving the issues raised in the recent short communication [1] and answered by [2] by proposing a systematic approximation scheme based on non-mapped shape functions, which both allows to fully exploit the unique advantages of the smoothed finite element method (SFEM) [3, 4, 5, 6, 7, 8, 9] and resolve the existence, linearity and positivity deficiencies pointed out in [1]. We show that Wachspress interpolants [10] computed in the physical coordinate system are very well suited to the SFEM, especially when elements are heavily distorted (obtuse interior angles). The proposed approximation leads to results which are almost identical to those of the SFEM initially proposed in [3]. These results that the proposed approximation scheme forms a strong and rigorous basis for construction of smoothed finite element methods.
Computers & Structures | 2011
Sundararajan Natarajan; P. M. Baiz; M. Ganapathi; Pierre Kerfriden; Stéphane Bordas
In this paper, the linear free flexural vibrations of functionally graded material plates with a through center crack is studied using an 8-noded shear flexible element. The material properties are assumed to be temperature dependent and graded in the thickness direction. The effective material properties are estimated using the Mori-Tanaka homogenization scheme. The formulation is developed based on first-order shear deformation theory. The shear correction factors are evaluated employing the energy equivalence principle. The variation of the plates natural frequency is studied considering various parameters such as the crack length, plate aspect ratio, skew angle, temperature, thickness and boundary conditions. The results obtained here reveal that the natural frequency of the plate decreases with increase in temperature gradient, crack length and gradient index.
International Journal for Numerical Methods in Engineering | 2013
Sundararajan Natarajan; Chongmin Song
SUMMARY In this paper, we replace the asymptotic enrichments around the crack tip in the extended finite element method (XFEM) with the semi-analytical solution obtained by the scaled boundary finite element method (SBFEM). The proposed method does not require special numerical integration technique to compute the stiffness matrix, and it improves the capability of the XFEM to model cracks in homogeneous and/or heterogeneous materials without a priori knowledge of the asymptotic solutions. A Heaviside enrichment is used to represent the jump across the discontinuity surface. We call the method as the extended SBFEM. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics show that the proposed method yields accurate results with improved condition number. A simple code is annexed to compute the terms in the stiffness matrix, which can easily be integrated in any existing FEM/XFEM code. Copyright © 2013 John Wiley & Sons, Ltd.
Composite Structures | 2014
Sundararajan Natarajan; Pratik S. Deogekar; Ganapathi Manickam; Salim Belouettar
Abstract The effect of moisture concentration and the thermal gradient on the free flexural vibration and buckling of laminated composite plates are investigated. The effect of a centrally located cutout on the global response is also studied. The analysis is carried out within the framework of the extended finite element method. A Heaviside function is used to capture the jump in the displacement and an enriched shear flexible 4-noded quadrilateral element is used for the spatial discretization. The formulation takes into account the transverse shear deformation and accounts for the lamina material properties at elevated moisture concentrations and temperature. The influence of the plate geometry, the geometry of the cutout, the moisture concentration, the thermal gradient and the boundary conditions on the free flexural vibration is numerically studied.
European Journal of Mechanics A-solids | 2014
Sundararajan Natarajan; S. Chakraborty; M. Ganapathi; M. Subramanian
Abstract In this paper, the effect of local defects, viz., cracks and cutouts on the buckling behaviour of functionally graded material plates subjected to mechanical and thermal load is numerically studied. The internal discontinuities, viz., cracks and cutouts are represented independent of the mesh within the framework of the extended finite element method and an enriched shear flexible 4-noded quadrilateral element is used for the spatial discretization. The properties are assumed to vary only in the thickness direction and the effective properties are estimated using the Mori-Tanaka homogenization scheme. The plate kinematics is based on the first order shear deformation theory. The influence of various parameters, viz., the crack length and its location, the cutout radius and its position, the plate aspect ratio and the plate thickness on the critical buckling load is studied. The effect of various boundary conditions is also studied. The numerical results obtained reveal that the critical buckling load decreases with increase in the crack length, the cutout radius and the material gradient index. This is attributed to the degradation in the stiffness either due to the presence of local defects or due to the change in the material composition.
Journal of Fluids and Structures | 2014
A Sankar; Sundararajan Natarajan; Mohamed Haboussi; K Ramajeyathilagam; M. Ganapathi
Abstract In this paper, the flutter characteristics of sandwich panels with carbon nanotube (CNT) reinforced face sheets are investigated using QUAD-8 shear flexible element developed based on higher-order structural theory. The formulation accounts for the realistic variation of the displacements through the thickness, the possible discontinuity in the slope at the interface, and the thickness stretch affecting the transverse deflection. The in-plane and rotary inertia terms are also included in the formulation. The first-order high Mach number approximation to linear potential flow theory is employed for evaluating the aerodynamic pressure. The solutions of the complex eigenvalue problem, developed based on Lagrange׳s equation of motion are obtained using the standard method for finding the eigenvalues. The accuracy of the present formulation is demonstrated considering the problems for which solutions are available. A detailed numerical study is carried out to bring out the efficacy of the higher-order model over the first-order theory and also to examine the influence of the volume fraction of the CNT, core-to-face sheet thickness, the plate thickness and the aspect ratio, damping and the temperature on the flutter boundaries and the associated vibration modes.