Sundas Fayyaz
University of Lahore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sundas Fayyaz.
Tumor Biology | 2015
Ammad Ahmad Farooqi; Kun-Tzu Li; Sundas Fayyaz; Yung-Ting Chang; Muhammad Ismail; Chih-Chuang Liaw; Shyng-Shiou F. Yuan; Jen-Yang Tang; Hsueh-Wei Chang
Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy.
Marine Drugs | 2014
Ammad Ahmad Farooqi; Sundas Fayyaz; Ming-Feng Hou; Kun-Tzu Li; Jen-Yang Tang; Hsueh-Wei Chang
It is becoming more understandable that an existing challenge for translational research is the development of pharmaceuticals that appropriately target reactive oxygen species (ROS)-mediated molecular networks in cancer cells. In line with this approach, there is an overwhelmingly increasing list of many non-marine drugs and marine drugs reported to be involved in inhibiting and suppressing cancer progression through ROS-mediated cell death. In this review, we describe the strategy of oxidative stress-based therapy and connect the ROS modulating effect to the regulation of apoptosis and autophagy. Finally, we focus on exploring the function and mechanism of cancer therapy by the autophagy modulators including inhibitors and inducers from non-marine drugs and marine drugs.
Asian Pacific Journal of Cancer Prevention | 2014
Rukset Attar; Farhana Sajjad; Muhammad Zahid Qureshi; Fizza Tahir; Ejaz Hussain; Sundas Fayyaz; Ammad Ahmad Farooqi
Rapidly increasing number of outstanding developments in the field of TRAIL mediated signaling have revolutionized our current information about inducing and maximizing TRAIL mediated apoptosis in resistant cancer cells. Data obtained with high-throughput technologies have provided finer resolution of tumor biology and now it is known that a complex structure containing malignant cells strictly coupled with a large variety of surrounding cells constitutes the tumor stroma. Utility of mesenchymal stem cells (MSCs) as cellular vehicles has added new layers of information. There is sufficient experimental evidence substantiating efficient gene deliveries into MSCs by retroviral, lentiviral and adenoviral vectors. Moreover, there is a paradigm shift in molecular oncology and recent high impact research has shown controlled expression of TRAIL in cancer cells on insertion of complementary sequences for frequently downregulated miRNAs. In this review we have attempted to provide an overview of utility of TRAIL engineered MSCs for effective killing of tumor and potential of using miRNA response elements as rheostat like switch to control expression of TRAIL in cancer cells.
The Journal of Membrane Biology | 2012
Ammad Ahmad Farooqi; Sundas Fayyaz; Muhammad Tahir; Muhammed Javed Iqbal; Shahzad Bhatti
Breast carcinogenesis is a multidimensional disease that has resisted drug-related solutions to date because of heterogeneity, disorganized spatiotemporal behavior of signal transduction cascades, cell cycle checkpoints, cell transition, plasticity, and impaired pro-apoptotic response. These synchronized oncogenic events, including protein–protein interaction, transcriptional–regulatory, and signaling networks, trigger genomic and transcriptional disturbances in TRAIL-mediated signaling network neighborhoods. Therefore, tumor cells often acquire the ability to escape death by suppressing cell death pathways that normally function to eliminate damaged and harmful cells. This review describes the TRAIL-mediated cell death signaling pathways, the interactions between these pathways, and the ways in which these pathways are deregulated in breast cancer.
Molecules | 2017
Ammad Ahmad Farooqi; Sundas Fayyaz; Ana Rosa Silva; Antoni Sureda; Seyed Fazel Nabavi; Andrei Mocan; Anupam Bishayee
Cancer comprises a collection of related diseases characterized by the existence of altered cellular pathways resulting in an abnormal tendency for uncontrolled growth. A broad spectrum, coordinated, and personalized approach focused on targeting diverse oncogenic pathways with low toxicity and economic natural compounds can provide a real benefit as a chemopreventive and/or treatment of this complex disease. Oleuropein, a bioactive phenolic compound mainly present in olive oil and other natural sources, has been reported to modulate several oncogenic signalling pathways. This review presents and critically discusses the available literature about the anticancer and onco-suppressive activity of oleuropein and the underlying molecular mechanisms implicated in the anticarcinogenic and therapeutic effects. The existence of limitations and the promising perspectives of research on this phenolic compound are also critically analyzed and discussed.
Asian Pacific Journal of Cancer Prevention | 2014
Daniele Rubert Nogueira; Ilhan Yaylim; Qurratulain Aamir; Sundas Fayyaz; Syed Kamran-ul-Hassan Naqvi; Ammad Ahmad
Research over the years has progressively shown substantial broadening of the tumor necrosis factor alpha- related apoptosis-inducing ligand (TRAIL)-mediated signaling landscape. Increasingly it is being realized that pancreatic cancer is a multifaceted and genomically complex disease. Suppression of tumor suppressors, overexpression of oncogenes, epigenetic silencing, and loss of apoptosis are some of the extensively studied underlying mechanisms. Rapidly accumulating in vitro and in vivo evidence has started to shed light on the resistance mechanisms in pancreatic cancer cells. More interestingly a recent research has opened new horizons of miRNA regulation by DR5 in pancreatic cancer cells. It has been shown that DR5 interacts with the core microprocessor components Drosha and DGCR8, thus impairing processing of primary let-7. Xenografting DR5 silenced pancreatic cancer cells in SCID-mice indicated that there was notable suppression of tumor growth. There is a paradigm shift in our current understanding of TRAIL mediated signaling in pancreatic cancer cells that is now adding new layers of concepts into the existing scientific evidence. In this review we have attempted to provide an overview of recent advances in TRAIL mediated signaling in pancreatic cancer as evidenced byfindings of in vitro and in vivo analyses. Furthermore, we discuss nanotechnological advances with emphasis on PEG-TRAIL and four-arm PEG cross-linked hyaluronic acid (HA) hydrogels to improve availability of TRAIL at target sites.
Asian Pacific Journal of Cancer Prevention | 2014
Aliye Aras; Muhammed Javed Iqbal; Syed Kamran-ul-Hassan Naqvi; Yusuf Can Gerçek; Kadir Boztas; Maria Luisa Gasparri; Iryna Shatynska-Mytsyk; Sundas Fayyaz; Ammad Ahmad Farooqi
Cancer is a multifaceted and genomically complex disease and research over decades has gradually and sequentially shown that essential biological mechanisms including cell cycle arrest and apoptosis are deregulated. The benefits of essential oils from different plants have started to gain appreciation as evidenced by data obtained from cancer cell lines and xenografted mice. Encouraging results obtained from preclinical studies have attracted considerable attention and various phytochemicals have entered into clinical trials.
International Journal of Molecular Sciences | 2017
Ammad Ahmad Farooqi; Chih-Wen Shu; Hurng-Wern Huang; Hui-Ru Wang; Yung-Ting Chang; Sundas Fayyaz; Shyng-Shiou Yuan; Jen-Yang Tang; Hsueh-Wei Chang
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
Archive | 2017
Rukset Attar; Maria Luisa Gasparri; Talha Abdul Halim; Dana Al Hamwi; Ilknur Ucak; Sundas Fayyaz; Farrukh Zaman; Ammad Ahmad Farooqi
Based on the insights gleaned from decades of research, it is now more understandable that Vitamin D plays an instrumental role in suppression of different cancers. Paradigm shift in our understanding of the vitamin D as an anti-cancer agent has opened new horizons to explore how it transduces the signals intracellularly to trigger myriad of cellular functions.
Journal of Experimental and Integrative Medicine | 2011
Ammad Ahmad Farooqi; Sundas Fayyaz; Shahzad Bhatti; Muhammad Ismail; Qaisar Mansoor