Sunday A. Adebusoye
University of Lagos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sunday A. Adebusoye.
Journal of Environmental Sciences-china | 2009
Oluwafemi S. Obayori; Sunday A. Adebusoye; Adams O. Adewale; Ganiyu Oladunjoye Oyetibo; Odunola O. Oluyemi; Rashid A. Amokun; Matthew O. Ilori
Four hydrocarbon degraders isolated from enriched oil- and asphalt-contaminated soils in Lagos, Nigeria, were tested for their petroleum degradation potentials. All the isolates were identified as species of Pseudomonas. Pseudomonas putida P11 demonstrated a strong ability to degrade kerosene, gasoline, diesel, engine oil and crude oil while P. aeruginosa BB3 exhibited fair degradative ability on crude oil, gasoline, engine oil, anthracene and pyrene but weak on kerosene, diesel and dibenzothiophene. Pseudomonas putida WL2 and P. aeruginosa MVL1 grew on crude oil and all its cuts tested with the latter possessing similar polycyclic aromatic potentials as P11. All the strains grew logarithmically with 1-2 orders of magnitude and with generation time ranging significantly between 3.07 and 8.55 d at 0.05 level of confidence. Strains WL2 and MVL1 utilized the oil substrate best with more than 70% in 6 d experimental period, whereas the same feat was achieved by P11 in 12 d period. BB3 on the other hand degraded only 46% within 6 d. Interestingly, data obtained from gas chromatographic analysis of oil recovered from the culture fluids of MVL1 confirmed near-disappearance of major peaks (including aliphatics and aromatics) in the hydrocarbon mixture.
Environmental Science and Pollution Research | 2014
Rosalinda Gioia; Abidemi J. Akindele; Sunday A. Adebusoye; Kwadwo Ansong Asante; Shinsuke Tanabe; Alfons Buekens; Annie J. Sasco
Several studies have shown an increase in PCB sources in Africa due to leakage and wrongly disposed transformers, continuing import of e-waste from countries of the North, shipwreck, and biomass burning. Techniques used in the recycling of waste such as melting and open burning to recover precious metals make PCBs contained in waste and other semivolatile organic substances prone to volatilization, which has resulted in an increase of PCB levels in air, blood, breast milk, and fish in several regions of Africa. Consequences for workers performing these activities without adequate measures of protection could result in adverse human health effects. Recent biodegradation studies in Africa have revealed the existence of exotic bacterial strains exhibiting unique and unusual PCB metabolic capability in terms of array of congeners that can serve as carbon source and diversity of congeners attacked, marking considerable progress in the development of effective bioremediation strategies for PCB-contaminated matrices such as sediments and soils in tropical regions. Action must be taken to find and deal with the major African sources of these pollutants. The precise sources of the PCB plume should be pinned down and used to complete the pollutant inventories of African countries. These nations must then be helped to safely dispose of the potentially dangerous chemicals.
Chemosphere | 2008
Sunday A. Adebusoye; Matthew O. Ilori; Flynn W. Picardal; Olukayode O. Amund
Evidence for substantial aerobic degradation of Aroclor 1242 and Askarel fluid by newly characterized bacterial strains belonging to the Enterobacter, Ralstonia and Pseudomonas genera is presented. The organisms exhibited degradative activity in terms of total PCB/Askarel degradation, degradation of individual congeners and diversity of congeners attacked. Maximal degradation by the various isolates of Askarel ranged from 69% to 86% whereas, Aroclor 1242, with the exception of Ralstonia sp. SA-4 (9.7%), was degraded by 37% to 91%. PCB analysis showed that at least 45 of the representative congeners in Aroclor 1242 were extensively transformed by benzoate-grown cells without the need for biphenyl as an inducer of the upper degradation pathway. In incubations with Aroclor 1242, no clear correlation was observed between percentage of congener transformed and the degree of chlorination, regardless of the presence or absence of biphenyl. Recovery of significant but nonstoichiometric amounts of chloride from the culture media showed partial dechlorination of congeners and suggested production of partial degradation products. Addition of biphenyl evidently enhanced dechlorination of the mixture by some isolates. With the exception of Ralstonia sp. SA-5, chloride released ranged from 24% to 60% in the presence of biphenyl versus 0.35% to 15% without biphenyl.
African Journal of Biotechnology | 2008
Oluwafemi S. Obayori; Matthew O. Ilori; Sunday A. Adebusoye; Olukayode O. Amund; Ganiyu Oladunjoye Oyetibo
Impacts of crude petroleum pollution on the soil environment and microbial population dynamics as well as recovery rates of an abandoned farmland was monitored for seven months spanning the two major seasons in Nigeria with a view to establishing process conditions necessary for development of effective strategies for bioremediation. The physico-chemistry of the control and contaminated soils differed just significantly (P soil showed significant diversity in structure and number of flora .There was an initial drop in microbial population densities at the onset of pollution but, a gradual increase was observed thereafter. Higher counts of microflora were obtained for April, May, June and July samples which coincided with the onset and peak of wet season. A rapid and significant reduction in residual oil concentration was observed during this period. Overall, nearly 100% of the crude oil pollutant was degraded within the 28-week study period. The residual oil concentration gave a high but negative correlation coefficient (r = - 0.84 to -0.90) with total heterotrophic and hydrocarbon-utilizing populations. On application of data generated to model equations, approximately 60.5 weeks would elapse before the contaminated soil could recover from the impact of the oil. Our results show that a natural population readily able to degrade crude oil is present in the soil chosen for this study. However, it may be necessary to monitor the level of inorganic nutrients and adjust some appropriately to enhance biodegradation of the organic pollutant.
Bioresource Technology | 2011
Sunday A. Adebusoye; Marzia Miletto
Multiple bacterial strains with CBA metabolic properties were isolated using a simple selective strategy. Phylogenetic analysis of the 16S rRNA gene sequences grouped them into two main clusters consisting of four bacterial phyla and belonging to 17 genera. Whereas growth was more frequent with 2-CBA (∼68%), 50% grew on 4-CBA and ∼7% utilized 3-CBA. One third of the strains exhibited 2,4-dichlorobenzoic acid (2,4-diCBA) catabolic function and were mainly representatives of α-, β- and γ-Proteobacteria. In batch experiments, growth was concomitant with substrate disappearance and near-stoichiometric release of chloride. Doubling times for 2,4-diCBA degradation doubled those determined for mono-substituted CBAs. Out of the six 2,4-diCBA degraders submitted for enzyme assays, significant induction of catechol 1,2-dioxygenase types I and II activities in cell-free extracts were found in four while protocatechuate 3,4-dioxygenase activity was detected in the remaining two. Activities in CBA-grown cells were 20 orders-of-magnitude higher than those grown on benzoic acid.
Frontiers in Microbiology | 2016
Chioma C. Obi; Sunday A. Adebusoye; Esther O. Ugoji; Mathew O. Ilori; Olukayode O. Amund; William J. Hickey
Estuarine sediments are significant repositories of anthropogenic contaminants, and thus knowledge of the impacts of pollution upon microbial communities in these environments is important to understand potential effects on estuaries as a whole. The Lagos lagoon (Nigeria) is one of Africa’s largest estuarine ecosystems, and is impacted by hydrocarbon pollutants and other industrial and municipal wastes. The goal of this study was to elucidate microbial community structure in Lagos lagoon sediments to identify groups that may be adversely affected by pollution, and those that may serve as degraders of environmental contaminants, especially polycyclic aromatic hydrocarbons (PAHs). Sediment samples were collected from sites that ranged in types and levels of anthropogenic impacts. The sediments were characterized for a range of physicochemical properties, and microbial community structure was determined by Illumina sequencing of the 16S rRNA genes. Microbial diversity (species richness and evenness) in the Apapa and Eledu sediments was reduced compared to that of the Ofin site, and communities of both of the former two were dominated by a single operational taxonomic unit (OTU) assigned to the family Helicobacteraceae (Epsilonproteobacteria). In the Ofin community, Epsilonproteobacteria were minor constituents, while the major groups were Cyanobacteria, Bacteroidetes, and Firmicutes, which were all minor in the Apapa and Eledu sediments. Sediment oxygen demand (SOD), a broad indicator of contamination, was identified by multivariate analyses as strongly correlated with variation in alpha diversity. Environmental variables that explained beta diversity patterns included SOD, as well as levels of naphthalene, acenaphthylene, cobalt, cadmium, total organic matter, or nitrate. Of 582 OTU identified, abundance of 167 was significantly correlated (false discovery rate q≤ 0.05) to environmental variables. The largest group of OTU correlated with PAH levels were PAH/hydrocarbon-degrading genera of the Oceanospirillales order (Gammaproteobacteria), which were most abundant in the hydrocarbon-contaminated Apapa sediment. Similar Oceanospirillales taxa are responsive to marine oil spills and thus may present a unifying theme in marine microbiology as bacteria adapted for degradation of high hydrocarbon loads, and may represent a potential means for intrinsic remediation in the case of the Lagos lagoon sediments.
Petroleum Science and Technology | 2011
Matthew O. Ilori; Sunday A. Adebusoye; Oluwafemi S. Obayori; Ganiyu Oladunjoye Oyetibo; O. Ajidahun; C. James; Olukayode O. Amund
Abstract Because microbial degradation is known to be an efficient process in the in situ decontamination of oil-bearing environments, it is believed that development of effective bioremediation strategies will be aided by microbial sourcing of novel and competent hydrocarbon degraders with a broad and unusual substrate spectrum. Thus, in keeping with this objective, two Candida strains (MN1 and MC1) isolated after a repeated batch enrichment technique were tested for their biodegradation potentials on Nigerian crude oil, Escravos light. Axenic cultures of strains MN1 and MC1 grew at a rate of 1.623 and 0.586 d−1, respectively, in mineral salts medium supplemented with 8.4 g L−1 of crude oil. Whereas strain MN1 degraded aliphatic fractions by 97.6% and the aromatics by 74.61%, the corresponding values obtained for MC1 were 97.2% and 67.29% during the 14-day incubation period. The gas chromatography (GC) fingerprinting of aliphatic fractions showed major degradation of heptadecane (C17), octadecane (C18), nonadecane (C19), eicosane (C20), undodecane (C21), tricosane (C23), hexacosane (C26), octacosane (C28), and nonacosane (C29) in less than 6 days, whereas nearly 100% of these fractions including the isoprenoid molecules was metabolized in 14 days. Among the aromatic fractions that were nearly eliminated during the cultivation period were naphthalene, phenanthrene, fluoranthrene, chrysene, benzo(a)anthracene, benzo(b)fluoranthrene, and benzo(a)pyrene. Interestingly, substrate uptake studies showed that both strains grew very well on petroleum cuts, biphenyl, phenol, xylene, and quite a number of polycyclic aromatic hydrocarbons including pyrene, phenanthrene, and anthracene.
African Journal of Biotechnology | 2007
Matthew O. Ilori; Oluwafemi S. Obayori; Sunday A. Adebusoye; Frederick O. Abe; Ganiyu Oladunjoye Oyetibo
Samples obtained from three locations in the Lagos lagoon were studied for the effect of Aroclor 1221 on their population dynamics. In all three cases, both control and experimental microcosms showed slight increases between day 5 and day 10 with the highest value of 4 × 1010 cfu/ml in control and 1.2 ×1011, 8 × 1010 and 9 × 1010 cfu/ml for Iddo, Apapa and Tin Can samples respectively. Three isolates namely, Bacillus subtilis, Alcaligenes eutrophus and Pseudomona aeruginosa were obtained from the microcosms after successive enrichment. All the isolates grew readily on 100 ppm of Aroclor 1221 concomitant with production of yellow metabolites in mineral salts medium. Whereas maximal growth was observed at day 12 on biphenyl, that of the polychlorinated biphenyl (PCB) mixture was on day 15. Generally, growth dynamics were similar irrespective of the substrate while typical generation times, with the exception of B. subtilis on Aroclor 1221, ranged insignificantly (P thus, suggesting that chlorine substitution has little or no effect on catabolic potentials of the organisms. The degradative capability of these strains suggest that they contribute immensely to the self-purification processes occurring in the lagoon, and this could be exploited for decontamination of PCB polluted aquatic ecosystems.
Journal of Basic Microbiology | 2015
Matthew O. Ilori; Flynn W. Picardal; Rodolfo Aramayo; Sunday A. Adebusoye; Olufemi S. Obayori; Michael J. Benedik
Strain SK‐4, a polychlorinated biphenyl (PCB) degrader previously reported to utilize di‐ortho‐substituted biphenyl, was genotypically re‐characterized as a species of Cupriavidus. The bacterium harbored a single plasmid (pSK4), which resisted curing and which, after genetic marking by a transposon (SK4Tn5), could be mobilized into a pseudomonad. Analysis of pSK4 in both the transconjugant and the wild type revealed that it specifies the genes coding for 2‐hydroxy‐2,4‐pentadienoate degradation in addition to those of the upper biphenyl pathway. Expression of the benzoate metabolic pathway in the transconjugant is evidence suggesting that the benzoate catabolic genes are also localized on the plasmid. This implies that pSK4 codes for all the genes involved in biphenyl mineralization. It is therefore reasonable to propose that the plasmid is the determinant for the unique metabolic capabilities known to exist in Cupriavidus sp. strain SK‐4.
Applied Microbiology and Biotechnology | 2017
Chioma C. Obi; Sunday A. Adebusoye; Olukayode O. Amund; Esther O. Ugoji; Mathew O. Ilori; Curtis J. Hedman; William J. Hickey
Coastal sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) can be candidates for remediation via an approach like land farming. Land farming converts naturally anaerobic sediments to aerobic environments, and the response of microbial communities, in terms of community structure alterations and corresponding effects on biodegradative activities, is unknown. A key goal of this study was to determine if different sediments exhibited common patterns in microbial community responses that might serve as indicators of PAH biodegradation. Sediments from three stations in the Lagos Lagoon (Nigeria) were used in microcosms, which were spiked with a mixture of four PAH, then examined for PAH biodegradation and for shifts in microbial community structure by analysis of diversity in PAH degradation genes and Illumina sequencing of 16S rRNA genes. PAH biodegradation was similar in all sediments, yet each exhibited unique microbiological responses and there were no microbial indicators of PAH bioremediation common to all sediments.