Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sundeep Khosla is active.

Publication


Featured researches published by Sundeep Khosla.


Journal of Bone and Mineral Research | 2007

Bisphosphonate-Associated Osteonecrosis of the Jaw: Report of a Task Force of the American Society for Bone and Mineral Research

Sundeep Khosla; David B. Burr; Jane A. Cauley; David W. Dempster; Peter R. Ebeling; Dieter Felsenberg; Robert F. Gagel; Vincente Gilsanz; Theresa A. Guise; Sreenivas Koka; Laurie K. McCauley; Joan McGowan; Marc D. McKee; Suresh Mohla; David G. Pendrys; Lawrence G. Raisz; Salvatore L. Ruggiero; David Shafer; Lillian Shum; Stuart L. Silverman; Catherine Van Poznak; Nelson B. Watts; Sook-Bin Woo; Elizabeth Shane

ONJ has been increasingly suspected to be a potential complication of bisphosphonate therapy in recent years. Thus, the ASBMR leadership appointed a multidisciplinary task force to address key questions related to case definition, epidemiology, risk factors, diagnostic imaging, clinical management, and future areas for research related to the disorder. This report summarizes the findings and recommendations of the task force.


Journal of Bone and Mineral Research | 2000

The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption

Lorenz C. Hofbauer; Sundeep Khosla; Colin R. Dunstan; David L. Lacey; William J. Boyle; B. Lawrence Riggs

Although multiple hormones and cytokines regulate various aspects of osteoclast formation, the final two effectors are osteoprotegerin ligand (OPG‐L)/osteoclast differentiation factor (ODF), a recently cloned member of the tumor necrosis factor superfamily, and macrophage colony–stimulating factor. OPG‐L/ODF is produced by osteoblast lineage cells and exerts its biological effects through binding to its receptor, osteoclast differentiation and activation receptor (ODAR)/receptor activator of NF‐κB (RANK), on osteoclast lineage cells, in either a soluble or a membrane‐bound form, the latter of which requires cell‐to‐cell contact. Binding results in rapid differentiation of osteoclast precursors in bone marrow to mature osteoclasts and, at higher concentrations, in increased functional activity and reduced apoptosis of mature osteoclasts. The biological activity of OPG‐L/ODF is neutralized by binding to osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF), a member of the TNF‐receptor superfamily that also is secreted by osteoblast lineage cells. The biological importance of this system is underscored by the induction in mice of severe osteoporosis by targeted ablation of OPG/OCIF and by the induction of osteopetrosis by targeted ablation of OPG‐L/ODF or overexpression of OPG/OCIF. Thus, osteoclast formation may be determined principally by the relative ratio of OPG‐L/ODF to OPG/OCIF in the bone marrow microenvironment, and alterations in this ratio may be a major cause of bone loss in many metabolic disorders, including estrogen deficiency and glucocorticoid excess. That changes in but two downstream cytokines mediate the effects of large numbers of upstream hormones and cytokines suggests a regulatory mechanism for osteoclastogenesis of great efficiency and elegance.


Endocrine Reviews | 1995

Osteoporosis in Men

Sundeep Khosla; Shreyasee Amin; Eric S. Orwoll

With the aging of the population, there is a growing recognition that osteoporosis and fractures in men are a significant public health problem, and both hip and vertebral fractures are associated with increased morbidity and mortality in men. Osteoporosis in men is a heterogeneous clinical entity: whereas most men experience bone loss with aging, some men develop osteoporosis at a relatively young age, often for unexplained reasons (idiopathic osteoporosis). Declining sex steroid levels and other hormonal changes likely contribute to age-related bone loss, as do impairments in osteoblast number and/or activity. Secondary causes of osteoporosis also play a significant role in pathogenesis. Although there is ongoing controversy regarding whether osteoporosis in men should be diagnosed based on female- or male-specific reference ranges (because some evidence indicates that the risk of fracture is similar in women and men for a given level of bone mineral density), a diagnosis of osteoporosis in men is generally made based on male-specific reference ranges. Treatment consists both of nonpharmacological (lifestyle factors, calcium and vitamin D supplementation) and pharmacological (most commonly bisphosphonates or PTH) approaches, with efficacy similar to that seen in women. Increasing awareness of osteoporosis in men among physicians and the lay public is critical for the prevention of fractures in our aging male population.


Journal of Bone and Mineral Research | 1998

A Unitary Model for Involutional Osteoporosis: Estrogen Deficiency Causes Both Type I and Type II Osteoporosis in Postmenopausal Women and Contributes to Bone Loss in Aging Men

B. Lawrence Riggs; Sundeep Khosla; L. Joseph Melton

We propose here a new unitary model for the pathophysiology of involutional osteoporosis that identifies estrogen (E) deficiency as the cause of both the early, accelerated and the late, slow phases of bone loss in postmenopausal women and as a contributing cause of the continuous phase of bone loss in aging men. The accelerated phase in women is most apparent during the first decade after menopause, involves disproportionate loss of cancellous bone, and is mediated mainly by loss of the direct restraining effects of E on bone cell function. The ensuing slow phase continues throughout life in women, involves proportionate losses of cancellous and cortical bone, and is associated with progressive secondary hyperparathyroidism. This phase is mediated mainly by loss of E action on extraskeletal calcium homeostasis which results in net calcium wasting and increases in the level of dietary calcium intake required to maintain bone balance. Because elderly men have low circulating levels of both bioavailable E and bioavailable testosterone (T) and because recent data suggest that E is at least as important as T in determining bone mass in aging men, E deficiency may also contribute substantially to the continuous bone loss of aging men. In both genders, E deficiency increases bone resorption and may also impair a compensatory increase in bone formation. For the most part, this unitary model is well supported by observational and experimental data and provides plausible explanations to traditional objections to a unitary hypothesis.


The Lancet | 2011

Osteoporosis: now and the future.

Tilman D. Rachner; Sundeep Khosla; Lorenz C. Hofbauer

Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic effect of osteoporosis, particularly postmenopausal osteoporosis, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Novel treatment strategies have been developed that aim to inhibit excessive bone resorption and increase bone formation. The most promising novel treatments include: denosumab, a monoclonal antibody for receptor activator of NF-κB ligand, a key osteoclast cytokine; odanacatib, a specific inhibitor of the osteoclast protease cathepsin K; and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This overview discusses these novel therapies and explains their underlying physiology.


Archive | 2011

New HorizonsOsteoporosis: now and the future

Tilman D. Rachner; Sundeep Khosla; Lorenz C. Hofbauer

Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic effect of osteoporosis, particularly postmenopausal osteoporosis, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Novel treatment strategies have been developed that aim to inhibit excessive bone resorption and increase bone formation. The most promising novel treatments include: denosumab, a monoclonal antibody for receptor activator of NF-κB ligand, a key osteoclast cytokine; odanacatib, a specific inhibitor of the osteoclast protease cathepsin K; and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This overview discusses these novel therapies and explains their underlying physiology.


Endocrinology | 1999

Stimulation of Osteoprotegerin Ligand and Inhibition of Osteoprotegerin Production by Glucocorticoids in Human Osteoblastic Lineage Cells: Potential Paracrine Mechanisms of Glucocorticoid-Induced Osteoporosis*

Lorenz C. Hofbauer; Francesca Gori; B. Lawrence Riggs; David L. Lacey; Colin R. Dunstan; Thomas C. Spelsberg; Sundeep Khosla

Osteoporosis is a serious complication of systemic glucocorticoid use. However, while glucocorticoids increase bone resorption in vitro and in vivo, the mechanism(s) of this effect are at present unclear. Recent studies have identified the osteoprotegerin (OPG) ligand (OPG-L) as the final effector of osteoclastogenesis, an action that is opposed by the soluble neutralizing receptor, OPG. Thus, we assessed glucocorticoid regulation of OPG and OPG-L in various human osteoblastic lineage cells using Northern analysis, RT-PCR, and ELISA. Dexamethasone inhibited constitutive OPG messenger RNA (mRNA) steady-state levels by 70 ‐90% in primary (MS) and immortalized stromal cells (hMS), primary trabecular osteoblasts (hOB), immortalized fetal osteoblasts (hFOB), and osteosarcoma cells (MG-63). In hFOB cells, dexamethasone inhibited constitutive OPG mRNA steady-state levels in a dose- and time-dependent fashion by 90%, and also suppressed cytokine-stimulated OPG mRNA steady-state levels. Dexamethasone-induced inhibition of OPG mRNA levels was not affected by the protein synthesis inhibitor, cycloheximide, and was shown to be due to inhibition of OPG gene transcription using a nuclear run-on assay. Moreover, dexamethasone also dose dependently (10 210 M‐10 27 M) inhibited constitutive OPG protein concentrations in the conditioned medium of hFOB cells from 2.59 6 0.02 ng/ml (control) to 0.30 6 0.01 ng/ml (88% inhibition; P , 0.001 by ANOVA). Concurrently, dexamethasone stimulated OPG-L mRNA steady-state levels in MS and hFOB cells by 2- and 4-fold, respectively. Treatment of murine marrow cultures with conditioned medium harvested from dexamethasone-treated MG-63 cells increased tartrate-resistant acid phosphatase (TRAP) activity by 54% (P , 0.005) compared with medium harvested from control-treated cells (in the presence of OPG-L and macrophage colony-stimulating factor). Moreover, dexamethasone (10 28 M) promoted osteoclast formation in vitro, as assessed by a 2.5-fold increase of TRAP activity in cell lysates (P , 0.001) and the appearance of TRAP-positive multinucleated cells. Our data are thus consistent with the hypothesis that glucocorticoids promote osteoclastogenesis by inhibiting OPG and concurrently stimulating OPG-L production by osteoblastic lineage cells, thereby enhancing bone resorption. (Endocrinology 140: 4382‐ 4389, 1999)


Journal of Bone and Mineral Research | 2004

Population‐Based Study of Age and Sex Differences in Bone Volumetric Density, Size, Geometry, and Structure at Different Skeletal Sites

B. Lawrence Riggs; L. Joseph Melton; Richard A. Robb; Jon J. Camp; Elizabeth J. Atkinson; James M. Peterson; Peggy A Rouleau; Cynthia H. McCollough; Mary L. Bouxsein; Sundeep Khosla

In a population‐based, cross‐sectional study, we assessed age‐ and sex‐specific changes in bone structure by QCT. Over life, the cross‐sectional area of the vertebrae and proximal femur increased by ∼15% in both sexes, whereas vBMD at these sites decreased by 39–55% and 34–46%, respectively, with greater decreases in women than in men.


Journal of Clinical Investigation | 2000

Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men

Alireza Falahati-Nini; B. Lawrence Riggs; Elizabeth J. Atkinson; W. Michael O’Fallon; Richard Eastell; Sundeep Khosla

Young adult males who cannot produce or respond to estrogen (E) are osteopenic, suggesting that E may regulate bone turnover in men, as well as in women. Both bioavailable E and testosterone (T) decrease substantially in aging men, but it is unclear which deficiency is the more important factor contributing to the increased bone resorption and impaired bone formation that leads to their bone loss. Thus, we addressed this issue directly by eliminating endogenous T and E production in 59 elderly men (mean age 68 years), studying them first under conditions of physiologic T and E replacement and then assessing the impact on bone turnover of withdrawing both T and E, withdrawing only T, or only E, or continuing both. Bone resorption markers increased significantly in the absence of both hormones and were unchanged in men receiving both hormones. By two-factor ANOVA, E played the major role in preventing the increase in the bone resorption markers, whereas T had no significant effect. By contrast, serum osteocalcin, a bone formation marker, decreased in the absence of both hormones, and both E and T maintained osteocalcin levels. We conclude that in aging men, E is the dominant sex steroid regulating bone resorption, whereas both E and T are important in maintaining bone formation.


Mayo Clinic Proceedings | 2008

Bisphosphonates: Mechanism of Action and Role in Clinical Practice

Matthew T. Drake; Bart L. Clarke; Sundeep Khosla

Bisphosphonates are primary agents in the current pharmacological arsenal against osteoclast-mediated bone loss due to osteoporosis, Paget disease of bone, malignancies metastatic to bone, multiple myeloma, and hypercalcemia of malignancy. In addition to currently approved uses, bisphosphonates are commonly prescribed for prevention and treatment of a variety of other skeletal conditions, such as low bone density and osteogenesis imperfecta. However, the recent recognition that bisphosphonate use is associated with pathologic conditions including osteonecrosis of the jaw has sharpened the level of scrutiny of the current widespread use of bisphosphonate therapy. Using the key words bisphosphonate and clinical practice in a PubMed literature search from January 1, 1998, to May 1, 2008, we review current understanding of the mechanisms by which bisphosphonates exert their effects on osteoclasts, discuss the role of bisphosphonates in clinical practice, and highlight some areas of concern associated with bisphosphonate use.

Collaboration


Dive into the Sundeep Khosla's collaboration.

Researchain Logo
Decentralizing Knowledge