Sune Justesen
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sune Justesen.
PLOS ONE | 2007
Morten Nielsen; Claus Lundegaard; Thomas Blicher; Kasper Lamberth; Mikkel Harndahl; Sune Justesen; Gustav Røder; Bjoern Peters; Alessandro Sette; Ole Lund; Søren Buus
Background Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately would be a major undertaking. Principal Findings Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and generates quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune epitopes and endogenous presented peptides, all successfully validate this method. We further demonstrate that the method can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly informative novel MHC molecules for future biochemical and functional analysis. Conclusions Encompassing all HLA molecules, this high-throughput computational method lends itself to epitope searches that are not only genome- and pathogen-wide, but also HLA-wide. Thus, it offers a truly global analysis of immune responses supporting rational development of vaccines and immunotherapy. It also promises to provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.
PLOS Computational Biology | 2008
Morten Nielsen; Claus Lundegaard; Thomas Blicher; Bjoern Peters; Alessandro Sette; Sune Justesen; Søren Buus; Ole Lund
CD4 positive T helper cells control many aspects of specific immunity. These cells are specific for peptides derived from protein antigens and presented by molecules of the extremely polymorphic major histocompatibility complex (MHC) class II system. The identification of peptides that bind to MHC class II molecules is therefore of pivotal importance for rational discovery of immune epitopes. HLA-DR is a prominent example of a human MHC class II. Here, we present a method, NetMHCIIpan, that allows for pan-specific predictions of peptide binding to any HLA-DR molecule of known sequence. The method is derived from a large compilation of quantitative HLA-DR binding events covering 14 of the more than 500 known HLA-DR alleles. Taking both peptide and HLA sequence information into account, the method can generalize and predict peptide binding also for HLA-DR molecules where experimental data is absent. Validation of the method includes identification of endogenously derived HLA class II ligands, cross-validation, leave-one-molecule-out, and binding motif identification for hitherto uncharacterized HLA-DR molecules. The validation shows that the method can successfully predict binding for HLA-DR molecules—even in the absence of specific data for the particular molecule in question. Moreover, when compared to TEPITOPE, currently the only other publicly available prediction method aiming at providing broad HLA-DR allelic coverage, NetMHCIIpan performs equivalently for alleles included in the training of TEPITOPE while outperforming TEPITOPE on novel alleles. We propose that the method can be used to identify those hitherto uncharacterized alleles, which should be addressed experimentally in future updates of the method to cover the polymorphism of HLA-DR most efficiently. We thus conclude that the presented method meets the challenge of keeping up with the MHC polymorphism discovery rate and that it can be used to sample the MHC “space,” enabling a highly efficient iterative process for improving MHC class II binding predictions.
Immunome Research | 2010
Morten Nielsen; Sune Justesen; Ole Lund; Claus Lundegaard; S. Buus
BackgroundBinding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting which peptides bind to an MHC-II molecule is therefore of pivotal importance for understanding the immune response and its effect on host-pathogen interactions. The experimental cost associated with characterizing the binding motif of an MHC-II molecule is significant and large efforts have therefore been placed in developing accurate computer methods capable of predicting this binding event. Prediction of peptide binding to MHC-II is complicated by the open binding cleft of the MHC-II molecule, allowing binding of peptides extending out of the binding groove. Moreover, the genes encoding the MHC molecules are immensely diverse leading to a large set of different MHC molecules each potentially binding a unique set of peptides. Characterizing each MHC-II molecule using peptide-screening binding assays is hence not a viable option.ResultsHere, we present an MHC-II binding prediction algorithm aiming at dealing with these challenges. The method is a pan-specific version of the earlier published allele-specific NN-align algorithm and does not require any pre-alignment of the input data. This allows the method to benefit also from information from alleles covered by limited binding data. The method is evaluated on a large and diverse set of benchmark data, and is shown to significantly out-perform state-of-the-art MHC-II prediction methods. In particular, the method is found to boost the performance for alleles characterized by limited binding data where conventional allele-specific methods tend to achieve poor prediction accuracy.ConclusionsThe method thus shows great potential for efficient boosting the accuracy of MHC-II binding prediction, as accurate predictions can be obtained for novel alleles at highly reduced experimental costs. Pan-specific binding predictions can be obtained for all alleles with know protein sequence and the method can benefit by including data in the training from alleles even where only few binders are known. The method and benchmark data are available at http://www.cbs.dtu.dk/services/NetMHCIIpan-2.0
PLOS ONE | 2008
Christian Leisner; Nina Loeth; Kasper Lamberth; Sune Justesen; Christina Sylvester-Hvid; Esben Gjerløff Wedebye Schmidt; Mogens H. Claesson; Søren Buus; Anette Stryhn
Background Cytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTLs are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC tetramers have become important reagents for detection and enumeration of specific CTLs. Conventional peptide-MHC-tetramer production involves recombinant MHC production, in vitro refolding, biotinylation and tetramerization; each step followed by various biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers. Methodology/Principal Findings We have developed an approach whereby any given tetramer specificity can be produced within 2 days with very limited effort and hands-on time. The strategy is based on the isolation of correctly oxidized, in vivo biotinylated recombinant MHC I heavy chain (HC). Such biotinylated MHC I HC molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps. Conclusions/Significance We have developed an efficient “one-pot, mix-and-read” strategy for peptide-MHC tetramer generation, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA) class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at this time we have over 40 different pre-biotinylated HLA proteins). It is simple, robust, and versatile technique with a very broad application potential as it can be adapted both to small- and large-scale production of one or many different peptide-MHC tetramers for T cell isolation, or epitope screening.
Journal of Biomolecular Screening | 2009
Mikkel Harndahl; Sune Justesen; Kasper Lamberth; Gustav Røder; Morten Nielsen; Søren Buus
The Human MHC Project aims at large-scale description of peptide-HLA binding to a wide range of HLA molecules covering all populations of the world and the accompanying generation of bioinformatics tools capable of predicting binding of any given peptide to any given HLA molecule. Here, the authors present a homogenous, proximity-based assay for detection of peptide binding to HLA class I molecules. It uses a conformation-dependent anti-HLA class I antibody, W6/32, as one tag and a biotinylated recombinant HLA class I molecule as the other tag, and a proximity-based signal is generated through the luminescent oxygen channeling immunoassay technology (abbreviated LOCI and commercialized as AlphaScreen™). Compared with an enzyme-linked immunosorbent assay—based peptide-HLA class I binding assay, the LOCI assay yields virtually identical affinity measurements, although having a broader dynamic range, better signal-to-background ratios, and a higher capacity. They also describe an efficient approach to screen peptides for binding to HLA molecules. For the occasional user, this will serve as a robust, simple peptide-HLA binding assay. For the more dedicated user, it can easily be performed in a high-throughput screening mode using standard liquid handling robotics and 384-well plates. We have successfully applied this assay to more than 60 different HLA molecules, leading to more than 2 million measurements. (Journal of Biomolecular Screening 2009:173-180)
Nature Nanotechnology | 2014
Tarek R. Fadel; Fiona A. Sharp; Nalini Vudattu; Ragy Ragheb; Justin Garyu; Dongin Kim; Enping Hong; Nan Li; Gary L. Haller; Lisa D. Pfefferle; Sune Justesen; Kevan C. Herold; Tarek M. Fahmy
Clinical translation of cell therapies requires strategies that can manufacture cells efficiently and economically. One promising way to reproducibly expand T cells for cancer therapy is by attaching the stimuli for T cells onto artificial substrates with high surface area. Here, we show that a carbon nanotube-polymer composite can act as an artificial antigen-presenting cell to efficiently expand the number of T cells isolated from mice. We attach antigens onto bundled carbon nanotubes and combined this complex with polymer nanoparticles containing magnetite and the T-cell growth factor interleukin-2 (IL-2). The number of T cells obtained was comparable to clinical standards using a thousand-fold less soluble IL-2. T cells obtained from this expansion were able to delay tumour growth in a murine model for melanoma. Our results show that this composite is a useful platform for generating large numbers of cytotoxic T cells for cancer immunotherapy.
Tissue Antigens | 2004
Christina Sylvester-Hvid; Morten Nielsen; Kasper Lamberth; Gustav Røder; Sune Justesen; Claus Lundegaard; H. Thomadsen; Ole Lund; Søren Brunak; Søren Buus
Abstract: An effective Severe Acute Respiratory Syndrome (SARS) vaccine is likely to include components that can induce specific cytotoxic T‐lymphocyte (CTL) responses. The specificities of such responses are governed by human leukocyte antigen (HLA)‐restricted presentation of SARS‐derived peptide epitopes. Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477–91). The latter was recently established when a causative coronavirus (SARS‐CoV) was isolated and full‐length sequenced (Marra et al., Science 2003: 300: 1399–404). Here, we have combined advanced bioinformatics and high‐throughput immunology to perform an HLA supertype‐, genome‐wide scan for SARS‐specific CTL epitopes. The scan includes all nine human HLA supertypes in total covering >99% of all individuals of all major human populations (Sette & Sidney, Immunogenetics 1999: 50: 201–12). For each HLA supertype, we have selected the 15 top candidates for test in biochemical binding assays. At this time (approximately 6 months after the genome was established), we have tested the majority of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design.
Separation Science and Technology | 2004
Anders Heebøll-Nielsen; Sune Justesen; Timothy John Hobley; Owen R.T. Thomas
ABSTRACT Different routes were screened for the preparation of superparamagnetic cation–exchange adsorbents for the capture of proteins using high-gradient magnetic fishing. Starting from a polyglutaraldehyde-coated base particle, the most successful of these involved attachment of sulphite to oligomers of epichlorohydrin formed on the particle surface. The resultant cation-exchanger had a maximum lysozyme binding capacity of 272 mg g–1 and a dissociation constant of 0.73 µM. Using lysozyme as a model protein in small-scale studies, appropriate conditions were then selected for the capture of lactoperoxidase from sweet bovine whey. Subsequently, a high-gradient magnetic fishing process was constructed for the fractionation of whey, in which lactoperoxidase was purified 36-fold and concentrated 4.7-fold.
Immunome Research | 2009
Sune Justesen; Mikkel Harndahl; Kasper Lamberth; Lise-Lotte B. Nielsen; Søren Buus
BackgroundMolecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle in the generation of MHC-II molecules as reagents to study and manipulate specific T helper cell responses. Methods to generate functional MHC-II molecules recombinantly, and measure their interaction with peptides, would be highly desirable; however, no consensus methodology has yet emerged.ResultsWe generated α and β MHC-II chain constructs, where the membrane-spanning regions were replaced by dimerization motifs, and the C-terminal of the β chains was fused to a biotinylation signal peptide (BSP) allowing for in vivo biotinylation. These chains were produced separately as inclusion bodies in E. coli , extracted into urea, and purified under denaturing and non-reducing conditions using conventional column chromatography. Subsequently, diluting the two chains into a folding reaction with appropriate peptide resulted in efficient peptide-MHC-II complex formation. Several different formats of peptide-binding assay were developed including a homogeneous, non-radioactive, high-throughput (HTS) binding assay. Binding isotherms were generated allowing the affinities of interaction to be determined. The affinities of the best binders were found to be in the low nanomolar range. Recombinant MHC-II molecules and accompanying HTS peptide-binding assay were successfully developed for nine different MHC-II molecules including the DPA1*0103/DPB1*0401 (DP401) and DQA1*0501/DQB1*0201, where both α and β chains are polymorphic, illustrating the advantages of producing the two chains separately.ConclusionWe have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools.
FEBS Journal | 2008
Jan Terje Andersen; Sune Justesen; Burkhard Fleckenstein; Terje E. Michaelsen; Gøril Berntzen; Muluneh Bekele Daba; Vigdis Lauvrak; Søren Buus; Inger Sandlie
The neonatal Fc receptor (FcRn) is a major histocompatibility complex class I‐related molecule that regulates the half‐life of IgG and albumin. In addition, FcRn directs the transport of IgG across both mucosal epithelium and placenta and also enhances phagocytosis in neutrophils. This new knowledge gives incentives for the design of IgG and albumin‐based diagnostics and therapeutics. To study FcRn in vitro and to select and characterize FcRn binders, large quantities of soluble human FcRn are needed. In this report, we explored the impact of two free cysteine residues (C48 and C251) of the FcRn heavy chain on the overall structure and function of soluble human FcRn and described an improved bacterial production strategy based on removal of these residues, yielding ∼ 70 mg·L−1 of fermentation of refolded soluble human FcRn. The structural and functional integrity was proved by CD, surface plasmon resonance and MALDI‐TOF peptide mapping analyses. The strategy may generally be translated to the large‐scale production of other major histocompatibility complex class I‐related molecules with nonfunctional unpaired cysteine residues. Furthermore, the anti‐FcRn response in goats immunized with the FcRn heavy chain alone was analyzed following affinity purification on heavy chain‐coupled Sepharose. Importantly, purified antibodies blocked the binding of both ligands to soluble human FcRn and were thus directed to both binding sites. This implies that the FcRn heavy chain, without prior assembly with human β2‐microglobulin, contains the relevant epitopes found in soluble human FcRn, and is therefore sufficient to obtain binders to either ligand‐binding site. This finding will greatly facilitate the selection and characterization of such binders.