Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sune Linder is active.

Publication


Featured researches published by Sune Linder.


Ecological Applications | 2001

NET PRIMARY PRODUCTION AND CARBON ALLOCATION PATTERNS OF BOREAL FOREST ECOSYSTEMS

Stith T. Gower; O. Krankina; R. J. Olson; M. Apps; Sune Linder; C. Wang

The three objectives of this paper were: to summarize net primary production (NPP) and carbon allocation patterns for boreal forests, to examine relationships between climatic and biological variables and NPP, and to examine carbon allocation coefficients for all boreal forests or types of boreal forests that can be used to estimate NPP from easily measured components of NPP. Twenty-four Class I stands (complete NPP budgets) and 45 Class II boreal forest stands (aboveground NPP [NPPA] and budget only) were identified. The geographic distribution of the Class I stands was not uniform; 46% of the stands were from two studies in North America, and only one stand was from the important larch forests of Eurasia. Total (above- and belowground) net primary production (NPPT) ranged from 52 to 868 g C·m−2·yr−1 and averaged 424 g C·m−2·yr−1. NPPA was consistently larger for deciduous than for evergreen boreal forests in each of the major boreal regions, especially for boreal forests in Alaska. Belowground net prima...


Nature | 2000

Constraints to growth of boreal forests.

P. G. Jarvis; Sune Linder; Eugene A. Vaganov; Malcolm K. Hughes

Understanding how the growth of trees at high latitudes in boreal forest is controlled is important for projections of global carbon sequestration and timber production in relation to climate change. Is stem growth of boreal forest trees constrained by the length of the growing season when stem cambial cells divide, or by the length of the period when resources can be captured? In both cases, the timing of the thaw in the spring is critical: neither cambial cell division nor uptake of nutrients and carbon dioxide can occur while the soil is frozen. Here we argue, on the basis of long-term observations made in northern Saskatchewan and Sweden, that the time between the spring thaw and the autumn freeze determines the amount of annual tree growth, mainly through temperature effects on carbon-dioxide uptake in spring and on nutrient availability and uptake during summer, rather than on cambial cell division.


Nature | 2000

Botany: Constraints to growth of boreal forests

P. G. Jarvis; Sune Linder

Understanding how the growth of trees at high latitudes in boreal forest is controlled is important for projections of global carbon sequestration and timber production in relation to climate change. Is stem growth of boreal forest trees constrained by the length of the growing season when stem cambial cells divide, or by the length of the period when resources can be captured? In both cases, the timing of the thaw in the spring is critical: neither cambial cell division nor uptake of nutrients and carbon dioxide can occur while the soil is frozen. Here we argue, on the basis of long-term observations made in northern Saskatchewan and Sweden, that the time between the spring thaw and the autumn freeze determines the amount of annual tree growth, mainly through temperature effects on carbon-dioxide uptake in spring and on nutrient availability and uptake during summer, rather than on cambial cell division.


Global Change Biology | 2012

Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature

Wouter Dieleman; Sara Vicca; Feike A. Dijkstra; Frank Hagedorn; Mark J. Hovenden; Klaus Steenberg Larsen; Jack A. Morgan; Astrid Volder; Claus Beier; Jeffrey S. Dukes; John S. King; Sebastian Leuzinger; Sune Linder; Yiqi Luo; Ram Oren; Paolo De Angelis; David T. Tingey; Marcel R. Hoosbeek; Ivan A. Janssens

In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]-only treatment than to those in the warming-only treatment. In contrast to warming-only experiments, both the combined and the [ CO2 ]-only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]-only treatment, possibly due to the warming-induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less-than-additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long-term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our results also suggest that projected responses to future global warming in Earth System models should not be parameterized using single factor warming experiments.


Forest Ecology and Management | 1998

Climatic factors controlling the productivity of Norway spruce: A model-based analysis

Johan Bergh; Ross E. McMurtrie; Sune Linder

The process-based growth model, BIOMASS, was modified to incorporate low-temperature effects on photosynthetic production in Norway spruce (Picea abies) stands growing in northern Sweden. The low-temperature features incorporated in BIOMASS made it possible to simulate and estimate the reduction in photosynthetic rates caused by boreal conditions. The following four simulation-scenarios were used: (i) ‘potential’ photosynthesis without boreal restrictions; (ii) reduction caused by a frozen soil; (iii) reduction caused by incomplete recovery of photosynthetic capacity during spring as a result of damage caused by low winter temperatures; and (iv) reduction as an effect of frost-induced autumn decline. Annual photosynthetic production (or gross primary production (GPP)) was simulated for three calendar years, 1990‐1992, for stands with low (control) and high (irrigated and fertilized) nutrient availability. The reduction of ‘potential’ GPP, caused by the lowtemperature effects, ranged from 35‐44% for control (C) and from 34‐42% for irrigated-fertilised (IL) stands, respectively. The most pronounced loss of ‘potential’ GPP originated from reduced photosynthetic capacity, in spring and early summer, which led to losses of 21‐28% for C and 19‐26% for IL stands. The variation between years differed mainly as an effect of differences in spring temperatures, which resulted in different rates of recovery of photosynthetic capacity. Reductions caused by frozen soil and low photosynthetic capacity during winter were similar in C and IL stands (12‐13%), as were the losses resulting from severe autumn frosts (3‐4%). It is concluded that, unless the effects of frozen soils and reduced photosynthetic capacity during spring and early summer are considered, large errors (ca. 40%) will be introduced into estimates of the annual photosynthetic production of boreal conifer forests. # 1998 Elsevier Science B.V.


Forest Ecology and Management | 2003

Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries

Johan Bergh; Michael Freeman; Bjarni D. Sigurdsson; Seppo Kellomäki; Kaisa Laitinen; Sini Niinistö; Heli Peltola; Sune Linder

A boreal version of the process-based simulation model, BIOMASS, was used to quantify the effect of increased temperature and CO2-concentrations on net primary production (NPP). Simulations were performed for both coniferous (Pinus sylvestris, Picea abies) and deciduous broad-leaves stands (Fagus sylvatica, Populus trichocarpa), growing in different Nordic countries (Denmark, Finland, Iceland, Norway and Sweden), representing a climatic gradient from a continental climate in Finland and Sweden to a maritime in Denmark, Norway and Iceland. Simulations with elevated temperature increased NPP by ca. 5–27% for the coniferous stands, being less for a Scots pine stand growing in a maritime climate (Norway) compared with a continental (central Sweden, eastern Finland). The increase in NPP could largely be ascribed to the earlier start of the growing season and more rapid recovery of the winter-damaged photosynthetic apparatus, but temperature-driven increases in respiration reduced carbon gain. The effect of elevated temperature on NPP was similar in the P. trichocarpa stand on Iceland, mainly caused by an earlier budbreak and a more rapid leaf development in spring. Increased temperature reduced, however, NPP for the F. sylvatica stand in Denmark, since elevated temperature had no effect on budbreak but increased the water deficit and water demand during the summer and lowered photosynthesis. Increased CO2-concentrations had an additional effect on NPP by 25–40% for the conifers and beech, which originated from increased photosynthesis, through enhanced carboxylation efficiency in summer and improved water use efficiency (beech). The effect of elevated CO2 on NPP was somewhat less for the P. trichocarpa by 13%. # 2003 Elsevier Science B.V. All rights reserved.


New Phytologist | 2013

Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests

Torgny Näsholm; Peter Högberg; Oskar Franklin; Daniel B. Metcalfe; Sonja G. Keel; Catherine Campbell; Vaughan Hurry; Sune Linder; Mona N. Högberg

Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. We followed symbiotic carbon (C)-N exchange in a large-scale boreal pine forest experiment by tracing (13) CO(2) absorbed through tree photosynthesis and (15) N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. We detected little (15) N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of (15) N from soil microbes and root tips to tree foliage. These results were tested in a model for C-N exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply.


Archive | 1992

Environmental and Physiological Constraints to Forest Yield

Sune Linder; Jeremy Flower-Ellis

Factors regulating biomass production concern the physical and biological processes controlling carbon gain and partitioning. These processes are the same in high- as in low-yielding stands. The specific site conditions in terms of climate and fertility, however, determine actual biomass production. In most temperate environments the major limiting factors for forest production are water and nutrients. Both factors greatly influence the amount of foliage produced and consequently directly affect the amount of radiation intercepted, hence also production.


Holzforschung | 2002

Effect of Growth Rate on Fibre Characteristics in Norway Spruce (Picea abies (L.) Karst.)

Harri Mäkinen; Pekka Saranpää; Sune Linder

Summary To study the effect of growth rate on fibre characteristics and their variations in Norway spruce, trees were sampled in a nutrient optimisation experiment in northern Sweden. Data was collected from 24 trees (40 years old) from fertilised and control plots after 12 years of annual nutrient application, as well as from older trees outside the experimental area. Fibre length, fibre diameter, cell wall thickness, lumen diameter and cell wall percentage were measured from every third annual ring at breast height and at a height of 4 m. Fibre properties, as well as their standard deviation, were closely related to ring number and distance from the pith. Intra-ring variation of fibre characteristics was high compared to their variation between trees. Fertilisation reduced fibre length and cell wall thickness, but increased fibre and lumen diameter in rings of the same age. The difference in fibre width, cell wall thickness and lumen diameter between fertilised and control trees was less apparent, but a greater difference in fibre length was found between the treatments with regard to distance from the pith. There was a similar effect of fertilisation on fibre properties in early- and latewood. The effect of enhanced growth rate was less pronounced at a height of 4 m (near the pith) than at breast height (in older rings). It was demonstrated that it is possible to model intra-tree variability of fibre characteristics using ring width and cambial age as independent variables. Models presented are, however, limited by the relatively young age of the sample trees used.


Tree Physiology | 2013

Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved

Bjarni D. Sigurdsson; Jane Medhurst; Göran Wallin; Olafur Eggertsson; Sune Linder

The growth responses of mature Norway spruce (Picea abies (L.) Karst.) trees exposed to elevated [CO(2)] (CE; 670-700 ppm) and long-term optimized nutrient availability or elevated air temperature (TE; ±3.9 °C) were studied in situ in northern Sweden in two 3 year field experiments using 12 whole-tree chambers in ca. 40-year-old forest. The first experiment (Exp. I) studied the interactions between CE and nutrient availability and the second (Exp. II) between CE and TE. It should be noted that only air temperature was elevated in Exp. II, while soil temperature was maintained close to ambient. In Exp. I, CE significantly increased the mean annual height increment, stem volume and biomass increment during the treatment period (25, 28, and 22%, respectively) when nutrients were supplied. There was, however, no significant positive CE effect found at the low natural nutrient availability. In Exp. II, which was conducted at the natural site fertility, neither CE nor TE significantly affected height or stem increment. It is concluded that the low nutrient availability (mainly nitrogen) in the boreal forests is likely to restrict their response to the continuous rise in [CO(2)] and/or TE.

Collaboration


Dive into the Sune Linder's collaboration.

Top Co-Authors

Avatar

Göran Wallin

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Torgny Näsholm

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bjarni D. Sigurdsson

Agricultural University of Iceland

View shared research outputs
Top Co-Authors

Avatar

Tomas Lundmark

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Ross E. McMurtrie

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. G. Jarvis

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Mats Räntfors

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

John D. Marshall

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge