Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sune M. Christensen is active.

Publication


Featured researches published by Sune M. Christensen.


Soft Matter | 2007

Surface-based lipidvesicle reactor systems: fabrication and applications

Sune M. Christensen; Dimitrios Stamou

Over the last ten years there has been a strong (bio)technological drive for the development of miniaturised reaction systems, motivated mainly by the need to reduce sample consumption and parallelise. Self-assembled soft-matter containers have naturally evolved to handle small volumes and could provide viable fluidic solutions especially in niche areas where ultra-miniaturisation, biocompatibility or cost are of critical importance. Here we focus on nanocontainers that are made of lipids and are immobilised on surfaces. We will highlight the most prominent contributions to date on the fabrication and the applications of surface-based vesicle systems as miniaturised reactors. Emphasis will be put on single-vesicle experiments.


Proceedings of the National Academy of Sciences of the United States of America | 2014

H-Ras forms dimers on membrane surfaces via a protein–protein interface

Wan-Chen Lin; Lars Iversen; Hsiung-Lin Tu; Christopher J. Rhodes; Sune M. Christensen; Jeffrey S. Iwig; Scott D. Hansen; William C. Huang; Jay T. Groves

Significance Ras is a key signaling molecule in living cells, and mutations in Ras are involved in 30% of human cancers. It is becoming progressively more clear that the spatial arrangement of proteins within a cell, not just their chemical structure, is an important aspect of their function. In this work, we use a series of quantitative physical techniques to map out the tendency of two Ras molecules to bind together to form a dimer on membrane surfaces. Insights from this work, as well as the technical assays developed, may help to discover new therapeutic drugs capable of modulating the errant behavior of Ras in cancer. The lipid-anchored small GTPase Ras is an important signaling node in mammalian cells. A number of observations suggest that Ras is laterally organized within the cell membrane, and this may play a regulatory role in its activation. Lipid anchors composed of palmitoyl and farnesyl moieties in H-, N-, and K-Ras are widely suspected to be responsible for guiding protein organization in membranes. Here, we report that H-Ras forms a dimer on membrane surfaces through a protein–protein binding interface. A Y64A point mutation in the switch II region, known to prevent Son of sevenless and PI3K effector interactions, abolishes dimer formation. This suggests that the switch II region, near the nucleotide binding cleft, is either part of, or allosterically coupled to, the dimer interface. By tethering H-Ras to bilayers via a membrane-miscible lipid tail, we show that dimer formation is mediated by protein interactions and does not require lipid anchor clustering. We quantitatively characterize H-Ras dimerization in supported membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, time-resolved fluorescence anisotropy, single-molecule tracking, and step photobleaching analysis. The 2D dimerization Kd is measured to be ∼1 × 103 molecules/µm2, and no higher-order oligomers were observed. Dimerization only occurs on the membrane surface; H-Ras is strictly monomeric at comparable densities in solution. Analysis of a number of H-Ras constructs, including key changes to the lipidation pattern of the hypervariable region, suggest that dimerization is a general property of native H-Ras on membrane surfaces.


Biophysical Journal | 2008

A Fluorescence-Based Technique to Construct Size Distributions from Single-Object Measurements: Application to the Extrusion of Lipid Vesicles

Andreas H. Kunding; Michael W. Mortensen; Sune M. Christensen; Dimitrios Stamou

We report a novel approach to quantitatively determine complete size distributions of surface-bound objects using fluorescence microscopy. We measure the integrated intensity of single particles and relate it to their size by taking into account the object geometry and the illumination profile of the microscope, here a confocal laser scanning microscope. Polydisperse (as well as monodisperse) size distributions containing objects both below and above the optical resolution of the microscope are recorded and analyzed. The data is collected online within minutes, which allows the user to correlate the size of an object with the response from any given fluorescence-based biochemical assay. We measured the mean diameter of extruded fluorescently labeled lipid vesicles using the proposed method, dynamic light scattering, and cryogenic transmission electron microscopy. The three techniques were in excellent agreement, measuring the same values within 7-9%. Furthermore we demonstrated here, for the first time that we know of, the ability to determine the full size distribution of polydisperse samples of nonextruded lipid vesicles. Knowledge of the vesicle size distribution before and after extrusion allowed us to propose an empirical model to account for the effect of extrusion on the complete size distribution of vesicle samples.


Science | 2014

Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics

Lars Iversen; Hsiung-Lin Tu; Wan-Chen Lin; Sune M. Christensen; Steven M. Abel; Jeffrey S. Iwig; Hung-Jen Wu; Jodi Gureasko; Christopher Rhodes; Rebecca S. Petit; Scott D. Hansen; Peter Daniel Thill; Cheng-han Yu; Dimitrios Stamou; Arup K. Chakraborty; John Kuriyan; Jay T. Groves

Outliers dominate signaling at cell membrane SOS enzymes act at cell membranes to activate Ras, a regulatory protein often overactive in cancer cells. Iversen et al. devised a system where they could observe the activity of individual enzymes at work. The single SOS molecules occupied stable states that varied greatly in their catalytic activity. Regulation appeared to occur by altering the time spent in active states. The overall activity of SOS was determined by just a few molecules that achieved the highest catalytic activity. The methods described should allow further detailed kinetic analysis of this and other signaling events that occur at the cell membrane — properties that it is not possible to discern from bulk biochemical measurements. Science, this issue p. 50 Single-molecule measurements reveal insights into regulation of the small GTPase Ras. Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.


Nature Nanotechnology | 2012

Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics

Sune M. Christensen; Pierre-Yves Bolinger; Nikos S. Hatzakis; Michael W. Mortensen; Dimitrios Stamou

Handling and mixing ultrasmall volumes of reactants in parallel can increase the throughput and complexity of screening assays while simultaneously reducing reagent consumption. Microfabricated silicon and plastic can provide reliable fluidic devices, but cannot typically handle total volumes smaller than ∼1 × 10(-12) l. Self-assembled soft matter nanocontainers can in principle significantly improve miniaturization and biocompatibility, but exploiting their full potential is a challenge due to their small dimensions. Here, we show that small unilamellar lipid vesicles can be used to mix volumes as small as 1 × 10(-19) l in a reproducible and highly parallelized fashion. The self-enclosed nanoreactors are functionalized with lipids of opposite charge to achieve reliable fusion. Single vesicles encapsulating one set of reactants are immobilized on a glass surface and then fused with diffusing vesicles of opposite charge that carry a complementary set of reactants. We find that ∼85% of the ∼1 × 10(6) cm(-2) surface-tethered nanoreactors undergo non-deterministic fusion, which is leakage-free in all cases, and the system allows up to three to four consecutive mixing events per nanoreactor.


Sensors | 2010

Sensing-Applications of Surface-Based Single Vesicle Arrays

Sune M. Christensen; Dimitrios Stamou

A single lipid vesicle can be regarded as an autonomous ultra-miniaturised 3D biomimetic “scaffold” (Ø ≥ 13 nm) ideally suited for reconstitution and interrogation of biochemical processes. The enclosing lipid bilayer membrane of a vesicle can be applied for studying binding (protein/lipid or receptor/ligand interactions) or transmembrane events (membrane permeability or ion channel activation) while the aqueous vesicle lumen can be used for confining few or single macromolecules and probe, e.g., protein folding, catalytic pathways of enzymes or more complex biochemical reactions, such as signal transduction cascades. Immobilisation (arraying) of single vesicles on a solid support is an extremely useful technique that allows detailed characterisation of vesicle preparations using surface sensitive techniques, in particular fluorescence microscopy. Surface-based single vesicle arrays allow a plethora of prototypic sensing applications in a high throughput format with high spatial and high temporal resolution. In this review we present a series of applications of single vesicle arrays for screening/sensing of: membrane curvature dependent protein-lipid interactions, bilayer tension, reactions triggered in the vesicle lumen, the activity of transmembrane protein channels and biological membrane fusion reactions.


Nature Methods | 2014

Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes.

Signe Mathiasen; Sune M. Christensen; Juan José Fung; Søren Rasmussen; Jonathan F. Fay; Sune K. Jørgensen; Salome Veshaguri; David L. Farrens; Maria Kiskowski; Brian K. Kobilka; Dimitrios Stamou

Proteoliposome reconstitution is a standard method to stabilize purified transmembrane proteins in membranes for structural and functional assays. Here we quantified intrareconstitution heterogeneities in single proteoliposomes using fluorescence microscopy. Our results suggest that compositional heterogeneities can severely skew ensemble-average proteoliposome measurements but also enable ultraminiaturized high-content screens. We took advantage of this screening capability to map the oligomerization energy of the β2-adrenergic receptor using ∼109-fold less protein than conventional assays.


Biophysical Journal | 2014

Geometrical Membrane Curvature as an Allosteric Regulator of Membrane Protein Structure and Function

Asger Tonnesen; Sune M. Christensen; Vadym Tkach; Dimitrios Stamou

Transmembrane proteins are embedded in cellular membranes of varied lipid composition and geometrical curvature. Here, we studied for the first time the allosteric effect of geometrical membrane curvature on transmembrane protein structure and function. We used single-channel optical analysis of the prototypic transmembrane β-barrel α-hemolysin (α-HL) reconstituted on immobilized single small unilamellar liposomes of different diameter and therefore curvature. Our data demonstrate that physiologically abundant geometrical membrane curvatures can enforce a dramatic allosteric regulation (1000-fold inhibition) of α-HL permeability. High membrane curvatures (1/diameter ~1/40 nm(-1)) compressed the effective pore diameter of α-HL from 14.2 ± 0.8 Å to 11.4 ± 0.6 Å. This reduction in effective pore area (~40%) when combined with the area compressibility of α-HL revealed an effective membrane tension of ~50 mN/m and a curvature-imposed protein deformation energy of ~7 kBT. Such substantial energies have been shown to conformationally activate, or unfold, β-barrel and α-helical transmembrane proteins, suggesting that membrane curvature could likely regulate allosterically the structure and function of transmembrane proteins in general.


Science | 2016

Direct observation of proton pumping by a eukaryotic P-type ATPase

Salome Veshaguri; Sune M. Christensen; Gerdi Kemmer; Garima Ghale; Mads P. Møller; Christina Lohr; Andreas L. Christensen; Bo Højen Justesen; Ida L. Jørgensen; Jürgen Schiller; Nikos S. Hatzakis; Michael Grabe; Thomas Günther Pomorski; Dimitrios Stamou

A proton pump in action P-type adenosine triphosphatases (ATPases) use the energy from ATP hydrolysis to pump cations across biological membranes. The electrochemical gradients that are generated control many essential cellular processes. Veshaguri et al. incorporated a plant proton pump into vesicles and monitored the dynamics of single pumps. Pumping was stochastically interrupted by long-lived inactive or leaky states. The work reveals how these proton pumps are regulated by a protein domain and by pH gradients. Science, this issue p. 1469 Single-molecule experiments reveal inactive and leaky states that define the activity and the regulation of a proton pump. In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters.


Biophysical Journal | 2011

Single Vesicle Assaying of SNARE-Synaptotagmin-Driven Fusion Reveals Fast and Slow Modes of Both Docking and Fusion and Intrasample Heterogeneity

Sune M. Christensen; Michael W. Mortensen; Dimitrios Stamou

Lipid mixing between vesicles functionalized with SNAREs and the cytosolic C2AB domain of synaptotagmin-1 recapitulates the basic Ca(2+) dependence of neuronal exocytosis. However, in the conventional ensemble lipid mixing assays it is not possible to discriminate whether Ca(2+) accelerates the docking or the fusion of vesicles. Here we report a fluorescence microscopy-based assay to monitor SNARE-mediated docking and fusion of individual vesicle pairs. In situ measurement of the concentration of diffusing particles allowed us to quantify docking rates by a maximum-likelihood approach. This analysis showed that C2AB and Ca(2+) accelerate vesicle-vesicle docking with more than two orders of magnitude. Comparison of the measured docking rates with ensemble lipid mixing kinetics, however, suggests that in most cases bilayer fusion remains the rate-limiting step. Our single vesicle results show that only ∼60% of the vesicles dock and only ∼6% of docked vesicles fuse. Lipid mixing on single vesicles was fast (t(mix) < 1 s) while an ensemble assay revealed two slow mixing processes with t(mix) ∼ 1 min and t(mix) ∼ 20 min. The presence of several distinct docking and fusion pathways cannot be rationalized at this stage but may be related to intrasample heterogeneities, presumably in the form of lipid and/or protein composition.

Collaboration


Dive into the Sune M. Christensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay T. Groves

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Hsiung-Lin Tu

University of California

View shared research outputs
Top Co-Authors

Avatar

Wan-Chen Lin

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Kuriyan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Lohr

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge