Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung-E Choi is active.

Publication


Featured researches published by Sung-E Choi.


Endocrinology | 2009

Protective Role of Autophagy in Palmitate-Induced INS-1 β-Cell Death

Sung-E Choi; Sung-Mi Lee; Youn-Jung Lee; Ling-Ji Li; Soo-Jin Lee; Ji-Hyun Lee; Youngsoo Kim; Hee-Sook Jun; Kwan-Woo Lee; Yup Kang

Autophagy, a vacuolar degradative pathway, constitutes a stress adaptation that avoids cell death or elicits the alternative cell-death pathway. This study was undertaken to determine whether autophagy is activated in palmitate (PA)-treated beta-cells and, if activated, what the role of autophagy is in the PA-induced beta-cell death. The enhanced formation of autophagosomes and autolysosomes was observed by exposure of INS-1 beta-cells to 400 microm PA in the presence of 25 mm glucose for 12 h. The formation of green fluorescent protein-LC3-labeled structures (green fluorescent protein-LC3 dots), with the conversion from LC3-I to LC3-II, was also distinct in the PA-treated cells. The phospho-mammalian target of rapamycin level, a typical signal pathway that inhibits activation of autophagy, was gradually decreased by PA treatment. Blockage of the mammalian target of rapamycin signaling pathway by treatment with rapamycin augmented the formation of autophagosomes but reduced PA-induced INS-1 cell death. In contrast, reduction of autophagosome formation by knocking down the ATG5, inhibition of fusion between autophagosome and lysosome by treatment with bafilomycin A1, or inhibition of proteolytic degradation by treatment with E64d/pepstatin A, significantly augmented PA-induced INS-1 cell death. These findings showed that the autophagy system could be activated in PA-treated INS-1 beta-cells, and suggested that the induction of autophagy might play an adaptive and protective role in PA-induced cell death.


Archives of Biochemistry and Biophysics | 2008

A chemical chaperone 4-PBA ameliorates palmitate-induced inhibition of glucose-stimulated insulin secretion (GSIS).

Sung-E Choi; Youn-Jung Lee; Hyun-Ju Jang; Kwan-Woo Lee; Youngsoo Kim; Hee-Sook Jun; Sang Sun Kang; Jaesun Chun; Yup Kang

Free fatty acids (FFAs) are believed to be a stimulus to elicit beta cell dysfunction. The present study was undertaken to determine whether endoplasmic reticulum (ER) stress was involved in palmitate-induced inhibition of glucose-stimulated insulin secretion (GSIS) and whether reduction of ER stress using a chemical chaperone restored the GSIS-inhibition. Treatment of INS-1 cells with 300 microM palmitate for 24h elicited ER stress, showing increased levels of phospho-eIF2alpha, Bip and spliced XBP, and also induced GSIS-inhibition without reduction of cell viability. Replenishment with 4-phenyl butyric acid (4-PBA) as a chemical chaperone reduced the palmitate-induced-ER stress and significantly reversed the palmitate-induced GSIS-inhibition. Furthermore, 4-PBA ameliorated palmitate-induced GSIS-inhibition in primary rat islet cells. These data suggested that ER stress was involved in FFA-induced GSIS-inhibition and that the FFA-induced beta cell dysfunction could be ameliorated by treatment with a chemical chaperone.


Metabolism-clinical and Experimental | 2012

Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB

Min Suk Lee; Sung-E Choi; Eun Suk Ha; So-Yeon An; Tae Ho Kim; Seung Jin Han; Hae Jin Kim; Dae Jung Kim; Yup Kang; Kwan-Woo Lee

We investigated the effects of fibroblast growth factor-21 (FGF-21) on palmitate-induced insulin resistance in skeletal muscle myotubes. First, to determine the effect of FGF-21 on palmitate-induced insulin resistance, we measured 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose uptake and levels of proteins involved in insulin signaling pathways (IRS-1 and Akt) in human skeletal muscle myotubes (HSMMs) exposed to palmitate for 24h, and compared HSMMs exposed to palmitate and different doses of recombinant FGF-21. Second, to determine the mechanisms underlying the contribution of FGF-21 to palmitate-induced insulin resistance, we compared levels of proteins linked to palmitate-induced insulin resistance (PKC-θ, IKKα/β, JNK, p38, IκBα, and NF-κB) in HSMMs exposed to palmitate and different doses of recombinant FGF-21 for 24h. Palmitate-reduced glucose uptake was restored by FGF-21. Palmitate inhibited phosphorylation of Akt and thereby impaired insulin signaling in HSMMs. FGF-21 prevented palmitate from inhibiting the phosphorylation of Akt. These results indicate that FGF-21 prevented palmitate-induced insulin resistance in HSMMs. Palmitate activated NF-κB in HSMMs, thereby impairing the action of insulin and initiating chronic inflammation. FGF-21 inhibited palmitate-induced NF-κB activation in HSMMs. The results of the present study suggest that FGF-21 prevents palmitate-induced insulin resistance in HSMMs by inhibiting the activation of stress kinase and NF-κB.


Molecular and Cellular Endocrinology | 2007

Involvement of Ca2+-mediated apoptotic signals in palmitate-induced MIN6N8a beta cell death.

Sung-E Choi; Hyo-Eun Kim; Ha-Chul Shin; Hyun-Ju Jang; Kwan-Woo Lee; Youngsoo Kim; Sang Sun Kang; Jaesun Chun; Yup Kang

The extracellular Ca(2+) chelator EGTA and L-type Ca(2+) channel blockers, such as, nifedipine and nimodipine were found to have a protective effect on palmitate-induced MIN6N8a beta cell apoptosis, whereas the Ca(2+) channel opener, Bay K8644, enhanced the apoptotic process. Moreover, the phospho-form of Bad, in conjunction with phospho-Akt, was reduced in response to palmitate and the palmitate-induced dephosphorylations of Akt and Bad were dependent on Ca(2+) influx. The transient expression of catalytically active Akt prevented MIN6N8a cells from palmitate-induced apoptosis. Deltamethrin, an inhibitor of Ca(2+)-activated phosphatase, delayed Akt and Bad dephosphorylations, and then protected MIN6N8a cells from palmitate-induced apoptosis. On the other hand, palmitate was found to induce CHOP, an apoptotic transcription factor in response to ER stress, and this induction was enhanced by Ca(2+) influx. Our studies suggested that Ca(2+) influx and subsequent Ca(2+)-mediated apoptotic signals are involved in palmitate-induced beta cell death.


Breast Cancer Research | 2005

Downregulation of the anaphase-promoting complex (APC)7 in invasive ductal carcinomas of the breast and its clinicopathologic relationships.

Kwang Hwa Park; Sung-E Choi; Minseob Eom; Yup Kang

IntroductionThe anaphase-promoting complex (APC) is a multiprotein complex with E3 ubiquitin ligase activity, which is required for the ubiquitination of securin and cyclin-B. Moreover, the mitotic spindle checkpoint is activated if APC activation is prevented. In addition, several APC-targeting molecules such as securin, polo-like kinase, aurora kinase, and SnoN have been reported to be oncogenes. Therefore, dysregulation of APC may be associated with tumorigenesis. However, the clinical significance and the involvement of APC in tumorigenesis have not been investigated.MethodsThe expression of APC7 was immunohistochemically investigated in 108 invasive ductal carcinomas of the breast and its relationship with clinicopathologic parameters was examined. The expression of APC7 was defined as positive when the summed scores of staining intensities (0 to 3+) and stained proportions (0 to 3+) exceeded 3+.ResultsPositive APC7 expression was less frequent than its negative expression when histologic (P = 0.009) or nuclear grade (P = 0.009), or mitotic number (P = 0.0016) was elevated. The frequency of APC7 negative expression was higher in high Ki-67 or aneuploid groups than in low Ki-67 or diploid groups.ConclusionThese data show that loss of APC7 expression is more common in breast carcinoma cases with poor prognostic parameters or malignant characteristics. They therefore suggest that dysregulation of APC activity, possibly through downregulation of APC7, may be associated with tumorigenesis in breast cancer.


Endocrinology | 2011

Stimulation of Lipogenesis as Well as Fatty Acid Oxidation Protects against Palmitate-Induced INS-1 β-Cell Death

Sung-E Choi; Ik-Rak Jung; Youn-Jung Lee; Soo-Jin Lee; Ji-Hyun Lee; Young Soo Kim; Hee-Sook Jun; Kwan-Woo Lee; Chan Bae Park; Yup Kang

Saturated fatty acids are generally cytotoxic to β-cells. Accumulation of lipid intermediates and subsequent activation of lipid-mediated signals has been suggested to play a role in fatty acid-induced toxicity. To determine the effects of lipid metabolism in fatty acid-induced toxicity, lipid metabolism was modulated by up- and down-regulation of a lipogenic or fatty acid oxidation pathway, and the effects of various modulators on palmitate (PA)-induced INS-1 β-cell death were then evaluated. Treatment with the liver X receptor agonist T0901317 reduced PA-induced INS-1 cell death, regardless of its enhanced lipogenic activity. Furthermore, transient expression of a lipogenic transcription factor sterol regulatory element binding protein-1c (SREBP-1c) was also protective against PA-induced cytotoxicity. In contrast, knockdown of SREBP-1c or glycerol-3-phosphate acyltransferase 1 significantly augmented PA-induced cell death and reduced T0901317-induced protective effects. Conversely, T0901317 increased carnitine PA transferease-1 (CPT-1) expression and augmented PA oxidation. CPT-1 inhibitor etomoxir or CPT-1 knockdown augmented PA-induced cell death and reduced T0901317-induced protective effects, whereas the peroxisome proliferator-activated receptor (PPAR)-α agonist bezafibrate reduced PA-induced toxicity. In particular, T0901317 reduced the levels of PA-induced endoplasmic reticulum (ER) stress markers, including phospho-eukaryotic initiation factor-2α, phospho-C-Jun N terminal kinase, and CCAAT/enhancer-binding protein homologous protein. In contrast, knockdown of SREBP-1c or glycerol-3-phosphate acyltransferase 1 augmented PA-induced ER stress responses. Results of these experiments suggested that stimulation of lipid metabolism, including lipogenesis and fatty acid oxidation, protected β-cells from PA-induced lipotoxicity and that protection through enhanced lipogenesis was likely due to reduced ER stress.


Nutrition Research | 2011

Capsaicin attenuates palmitate-induced expression of macrophage inflammatory protein 1 and interleukin 8 by increasing palmitate oxidation and reducing c-Jun activation in THP-1 (human acute monocytic leukemia cell) cells

Sung-E Choi; Tae Ho Kim; Sang-A Yi; Yun Cheong Hwang; Won Sun Hwang; Sun Jung Choe; Seung Jin Han; Hae Jin Kim; Dae Jung Kim; Yup Kang; Kwan-Woo Lee

Capsaicin, a spicy component of hot peppers, has been shown to improve inflammatory disease and obesity. In this study, we tested the hypothesis that the anti-inflammatory activity of capsaicin can be used to improve free fatty acid (FFA)-induced inflammation by reducing gene expression of macrophage inflammatory protein 1 (MIP-1) and interleukin 8 (IL-8) in THP-1 (human acute monocytic leukemia cell) macrophages. To investigate whether capsaicin ameliorates palmitate-induced MIP-1 and IL-8 gene expressions, we treated THP-1 cells with palmitate in the presence or absence of capsaicin and measured MIP-1 and IL-8 by real-time polymerase chain reaction. To elucidate the mechanism by which capsaicin effects on palmitate-induced MIP-1 and IL-8 gene expressions, we performed immunoblotting with stress kinase-related antibodies and measured palmitate oxidation and palmitate oxidation-related gene expression. Palmitate and stearate but not the unsaturated FFA oleate significantly increased MIP-1 and IL-8 expressions in THP-1 macrophages. Treatment with capsaicin or FFA oxidation stimulators inhibited palmitate-induced MIP-1 and IL-8 expressions in THP-1 macrophages. Capsaicin increased the gene expression of carnitine palmitoyltransferase 1 and the β-oxidation of palmitate. Furthermore, capsaicin significantly reduced palmitate-stimulated activation of c-Jun N-terminal kinase, c-Jun, and p38. Our data suggest that the attenuation of palmitate-induced MIP-1 and IL-8 gene expressions by capsaicin is associated with reduced activation of c-Jun N-terminal kinase, c-Jun, and p38 and preserved β-oxidation activity.


Molecular and Cellular Biochemistry | 2011

Involvement of the TLR4 (Toll-like receptor4) signaling pathway in palmitate-induced INS-1 beta cell death

Sung-Mi Lee; Sung-E Choi; Ji-Hyun Lee; Jung-Jin Lee; Ik-Rak Jung; Soo-Jin Lee; Kwan-Woo Lee; Yup Kang

Fatty acid-induced cytotoxicity is believed to recapitulate lipotoxicity seen in obese type-2 diabetes, and, thus, contribute to beta cell loss in the disease. These studies were initiated to determine whether the Toll-like receptor (TLR) signaling pathway was involved in palmitate-induced beta cell death. Treatment of INS-1 beta cells with palmitate enhanced interaction between TLR and myeloid differentiation factor88 (MyD88). Concomitant with TLR/MyD88 interaction, the level of phospho-C-Jun N-terminal kinase (phospho-JNK) showed an increase; however, the level of inhibitory factor kappa B alpha (IκBα) showed a decrease. Gene knockdown of TLR4 prevented palmitate-induced INS-1 cell death, while knockdown of TLR2 did not. In addition, gene knockdown of TLR4 prevented palmitate-induced increase of phospho-JNK and decrease of IκBα. JNK inhibitor SP60125 significantly protected against palmitate-induced INS-1 cell death, while IκB kinase (IKK) inhibitor acetylsalicylate did not. These data suggest involvement of JNK activation through the TLR4 signaling pathway in palmitate-induced INS-1 beta cell death.


Vascular Pharmacology | 2010

Atherosclerosis induced by a high-fat diet is alleviated by lithium chloride via reduction of VCAM expression in ApoE-deficient mice.

Sung-E Choi; Hyun-Ju Jang; Yup Kang; Jong Gab Jung; Seung Jin Han; Hae Jin Kim; Dae Jung Kim; Kwan-Woo Lee

Endothelial cell dysfunction may play an important role in the development of various vascular diseases, including atherosclerosis. Here we investigated whether lithium chloride (LiCl), an inhibitor of glycogen synthase kinase-3β (GSK-3β), could counteract atherosclerosis induced by a high-fat diet in ApoE⁻/⁻ mice. Ten-week-old male mice were randomly divided into four groups: normal chow diet, high-fat diet (i.e., 20% fat and 0.5% cholesterol), high-fat diet with LiCl treatment for 6 weeks and high-fat diet with LiCl treatment for 14 weeks. Examination of plasma profiles indicated that blood glucose levels were significantly decreased by LiCl treatment. Supplementation with LiCl dramatically reduced atherosclerotic lesion formation in the aorta and aortic root. LiCl treatment also decreased vascular cell adhesion molecule (VCAM)-1 expression and macrophage infiltration into atherosclerotic lesion areas within the aortic valve. In addition, inhibition of GSK-3β by TDZD-8, SB216763, and LiCl, as well as adenoviral transduction with a catalytically inactive GSK-3β, reduced palmitate-induced VCAM-1 expression through inhibition of JNK activity and degradation of Iκ-Bα in human umbilical vein endothelial cells (HUVECs). The results of the present study suggest that LiCl alleviates palmitate-induced cell adhesion molecule expression in HUVECs and decreases atherosclerosis induced by a high-fat diet in ApoE⁻/⁻ mice. Thus, GSK-3β may be involved in the development of atherosclerosis induced by a high-fat diet in ApoE⁻/⁻ mice.


Journal of Proteome Research | 2011

Detection of differential proteomes associated with the development of type 2 diabetes in the Zucker rat model using the iTRAQ technique.

Dohyun Han; Sungyoon Moon; Hyunsoo Kim; Sung-E Choi; Soo-Jin Lee; Kyong Soo Park; Hee-Sook Jun; Yup Kang; Youngsoo Kim

Type 2 diabetes (T2D) is closely associated with obesity, and it arises when pancreatic β cells fail to achieve β cell compensation. However, the mechanism linking obesity, insulin resistance, and β cell failure in T2D is not fully understood. To explore this association, we carried out a differential proteomics study using the disease models of Zucker Fatty (ZF) and Zucker Diabetic Fatty (ZDF) rats as the rat models for obese/prediabetes and obese/diabetes, respectively. Differentially expressed islet proteins were identified among ZDF, ZF, and Zucker Lean (ZL, control rat) rats using three iTRAQ experiments, where three biological replicates and two technical replicates were examined to assess both the technical and biological reproducibilities. A total of 54 and 58 proteins were differentially expressed in ZDF versus ZL rats and in ZF versus ZL rats, respectively. Notably, the novel proteins involved in impaired insulin secretion (Scg2, Anxa2, and Rab10), mitochondrial dysfunction (Atp5b and Atp5l), extracellular matrix proteins (Lgal-1, Vim, and Fbn1), and microvascular ischemia (CPA1, CPA2, CPB, Cela2a, and Cela3b) were observed for the first time. With these novel proteins, our proteomics study could provide valuable clues for better understanding the underlying mechanisms associated with the dynamic transition of obesity to T2D.

Collaboration


Dive into the Sung-E Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge