Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung In Kim is active.

Publication


Featured researches published by Sung In Kim.


Journal of Thermophysics and Heat Transfer | 2010

Unsteady Simulations of a Film Cooling Flow from an Inclined Cylindrical Jet

Sung In Kim; Ibrahim Hassan

Film cooling is extensively used to provide protection against the severe thermal environment in gas turbine engines. Most of the computational studies on film cooling flow have been done using steady Reynolds-averaged Navier-Stokes calculation procedures. However, the flowfield associated with a jet in a crossflow is highly unsteady and complex with different types of vortical structures. In this paper, a computational investigation about the unsteady phenomena of a jet in a crossflow is performed using detached eddy simulation. Detailed computation of a single row of 35 deg round holes on a flat plate has been obtained for a 1.0 blowing ratio and a 2.0 density ratio. First, time-step size, grid resolution, and computational domain tests for an unsteady simulation have been conducted. Comparison between the results of unsteady Reynolds-averaged Navier-Stokes calculation, detached eddy simulation, and large eddy simulation is also performed. Comparison of the time-averaged detached eddy simulation prediction with the measured film-cooling effectiveness shows that the detached eddy simulation prediction is reasonable. From present detached eddy simulations, the influential coherent vortical structures of a film cooling flow can be seen. The unsteady physics of jet in a crossflow interactions and a jet liftoff in film cooling flows have been explained.


International Journal of Numerical Methods for Heat & Fluid Flow | 2012

Effect of Turbine Inlet Temperature on Rotor Blade Tip Leakage Flow and Heat Transfer

Sung In Kim; M. Hamidur Rahman; Ibrahim Hassan

Purpose – One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer.Design/methodology/approach – In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non‐uniform inlet temperature have been considered.Findings – The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on‐design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases...


Journal of Fluids Engineering-transactions of The Asme | 2008

Numerically Investigating the Effects of Cross-Links in Scaled Microchannel Heat Sinks

Minh N. Dang; Ibrahim Hassan; Sung In Kim

Thermal management for high performance of miniaturized electronic devices using microchannel heat sinks has recently become of interest to researchers and industry. Obtaining heat sink designs with uniform flow distribution is strongly desired. A number of experimental studies have been conducted to seek appropriate designs for microchannel heat sinks. However, pursuing this goal experimentally can be an expensive endeavor. The present work investigates the effect of cross-links on adiabatic two-phase flow in an array of parallel channels. It is carried out using the three-dimensional mixture model from the computational fluid dynamics (CFD) software, Fluent 6.3. A straight channel and two cross-linked channel models were simulated. The cross-links were located at 1/3 and 2/3s of the channel length, their width varied by one and two times the channel width. All test models had 45 parallel rectangular channels, with a hydraulic diameter of 1.59 mm. The results showed that the trend of flow distribution agrees with experimental results. A new design, with cross-links incorporated, was proposed and the results showed a significant improvement, up to 55%, on flow distribution, compared to the standard straight channel configuration without a penalty in the pressure drop. The effect of cross-links on flow distribution, flow structure, and pressure drop was also documented.


ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference | 2007

Unsteady Simulation of Film Cooling Flow From an Inclined Cylindrical Jet

Sung In Kim; Ibrahim Hassan; Xuezhi Zhang

Film cooling is extensively used to provide protection against the severe thermal environment in gas turbine engines. Most of the computational studies on film cooling flow have been done using steady Reynolds-Averaged Navier-Stokes (RANS) calculation procedures. However, the turbulent stress field is highly anisotropic in the wake region of the coolant jet, and the inherent unsteadiness of the coolant jet-crossflow interactions may have important implications in the cooling performance. In this paper, a computational investigation about the unsteady behavior of jet-in-crossflow applications is performed using DES. Detailed computation of a single row of 35 degree round holes on a flat plate has been obtained for a blowing ratio of 1.0 and a density ratio of 2.0. Firstly, time step size, grid resolution tests have been conducted. Comparison of the time-averaged DES prediction with the measured film cooling effectiveness shows that DES prediction is reasonable. From present simulations, the typical coherent vortical structures of the jet-in-crossflows can be seen. The unsteady physics of jet-in-crossflow interactions and a jet liftoff in film cooling flows have been explored.Copyright


International Journal of Computational Methods | 2014

TIP LEAKAGE FLOW AND HEAT TRANSFER ON TURBINE STAGE TIP AND CASING: EFFECT OF UNSTEADY STATOR–ROTOR INTERACTIONS

M. Hamidur Rahman; Sung In Kim; Ibrahim Hassan

Unsteady simulations were performed to investigate time dependent behaviors of the leakage flow structures and heat transfer on the rotor blade tip and casing in a single stage gas turbine engine. This paper mainly illustrates the unsteady nature of the leakage flow and heat transfer, particularly, that caused by the stator–rotor interactions. In order to obtain time-accurate results, the effects of varying the number of time steps, sub iterations, and the number of vane passing periods was firstly examined. The effect of tip clearance height and rotor speeds was also examined. The results showed periodic patterns of the tip leakage flow and heat transfer rate distribution for each vane passing. The relative position of the vane and vane trailing edge shock with respect to time alters the flow conditions in the rotor domain, and results in significant variations in the tip leakage flow structures and heat transfer rate distributions. It is observed that the trailing edge shock phenomenon results in a crit...


2010 Proceedings of the ASME Turbo Expo Conference | 2010

Unsteady Tip Leakage Flow Characteristics and Heat Transfer on Turbine Blade Tip and Casing

Hamidur Rahman; Sung In Kim; Ibrahim Hassan; Carole El Ayoubi

An unsteady numerical investigation was performed to examine time dependent behaviors of the tip leakage flow structures and heat transfer on the rotor blade tip and casing in a single stage gas turbine engine. A transonic, high-pressure turbine stage was modeled and simulated using a stage pressure ratio of 3.2. The rotor’s tip clearance was 1.2 mm in height (3% of the rotor span) and its speed was set at 9500 rpm. Periodic flow is observed for each vane passing period. Tip leakage flow as well as heat transfer data showed highly time dependent behaviors. A stator trailing edge shock appears as the turbine stage is operating at transonic conditions. The shock alters the flow condition in the rotor section, namely, the tip leakage flow structures and heat transfer rate distributions. The instantaneous Nusselt number distributions are compared to the time averaged and steady-state results. The same patterns in tip leakage flow structures and heat transfer rate distributions were observed in both unsteady and steady simulations. However, the unsteady simulation captured the locally time-dependent high heat transfer phenomena caused by the unsteady interaction with the upstream vane trailing-edge shock and the passing wake.Copyright


46th AIAA Aerospace Sciences Meeting and Exhibit | 2008

Unsteady heat transfer analysis of a film cooling flow

Sung In Kim; Ibrahim Hassan

Unsteady heat transfer in a turbine blade film cooling flow is studied using detached eddy simulation (DES). Detailed computation of a single row of 35 degree round holes on a flat plate has been obtained for a blowing ratio of 1.0 and a density ratio of 2.0. The instantaneous flow fields and heat transfer distributions are found to be highly unsteady and oscillatory in nature. The fluctuation of the adiabatic effectiveness and heat transfer coefficient, for example, can be as high as 15 and 50 percent of the time-averaged value, respectively. The correlation between the coherent vortical structures and the unsteady heat transfer is carefully examined. It is shown that the fluctuations in the adiabatic effectiveness and heat transfer coefficient are mainly caused by the spanwise fluctuation of the coolant jet and the thermal turbulent boundary layer accompanying the unsteady flow structures.


Journal of the Global Power and Propulsion Society | 2017

Assessment of turbulence model predictions for a centrifugal compressor simulation

Lee Gibson; Lee Galloway; Sung In Kim; Stephen Spence

Steady-state computational fluid dynamics (CFD) simulations are an essential tool in the design process of centrifugal compressors. Whilst global parameters, such as pressure ratio and efficiency, can be predicted with reasonable accuracy, the accurate prediction of detailed compressor flow fields is a much more significant challenge. Much of the inaccuracy is associated with the incorrect selection of turbulence model. The need for a quick turnaround in simulations during the design optimisation process, also demands that the turbulence model selected be robust and numerically stable with short simulation times. In order to assess the accuracy of a number of turbulence model predictions, the current study used an exemplar open CFD test case, the centrifugal compressor ‘Radiver’, to compare the results of three eddy viscosity models and two Reynolds stress type models. The turbulence models investigated in this study were (i) Spalart-Allmaras (SA) model, (ii) the Shear Stress Transport (SST) model, (iii) a modification to the SST model denoted the SST-curvature correction (SST-CC), (iv) Reynolds stress model of Speziale, Sarkar and Gatski (RSM-SSG), and (v) the turbulence frequency formulated Reynolds stress model (RSM-ω). Each was found to be in good agreement with the experiments (below 2% discrepancy), with respect to total-to-total parameters at three different operating conditions. However, for the off-design conditions, local flow field differences were observed between the models, with the SA model showing particularly poor prediction of local flow structures. The SST-CC showed better prediction of curved rotating flows in the impeller. The RSM-ω was better for the wake and separated flow in the diffuser. The SST model showed reasonably stable, robust and time efficient capability to predict global and local flow features.


International Journal for Computational Methods in Engineering Science and Mechanics | 2013

Tip leakage flow and heat transfer on turbine blade tip and casing, Part 1: Effect of tip clearance height and rotation speed

M. Hamidur Rahman; Sung In Kim; Ibrahim Hassan

Steady simulations were performed to investigate tip leakage flow and heat transfer characteristics on the rotor blade tip and casing in a single-stage gas turbine engine. A typical high-pressure gas turbine stage was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data under similar operating condition. The present numerical study focuses extensively on the effects of tip clearance heights and rotor rotational speeds on the blade tip and casing heat transfer characteristics. It was observed that the tip leakage flow structure is highly dependent on the height of the tip gap and the speed of the rotor. In all cases, the tip leakage flow was seen to separate and recirculate just around the corner of the pressure side of the blade tip. This region of re-circulating flow enlarges with increasing clearance heights. The separated leakage flow reattaches afterwards on the tip surface. Leakage flow reattachment was shown to enhance surface heat transfer at the tip. The interaction between tip leakage flow and secondary flows that is induced by the relative casing motion is found to significantly influence the blade tip and casing heat transfer distribution. A region of critical heat transfer exists on the casing near the blade tip leading edge and along the pressure-side edge for all the clearance heights that were investigated. At high rotation speed, the region of critical heat transfer tends to move towards the trailing edge due to the change in inflow angle.


Journal of Thermal Science and Engineering Applications | 2011

Numerical Study of Film Cooling Scheme on a Blunt-Nosed Body in Hypersonic Flow

Sung In Kim; Ibrahim Hassan

In hypersonic flight, the prediction of aerodynamic heating and the construction of a proper thermal protection system (TPS) are significantly important. In this study, the method of a film cooling technique, which is already the state of the art in cooling of gas turbine engines, is proposed for a fully reusable and active TPS. Effectiveness of the film cooling scheme to reduce convective heating rates for a blunt-nosed spacecraft flying at Mach number 6.56 and 40 deg angle of attack is investigated numerically. The inflow boundary conditions used the standard values at an altitude of 30 km. The computational domain consists of infinite rows of film cooling holes on the bottom of a blunt-nosed slab. Laminar and several turbulent calculations have been performed and compared. The influence of blowing ratios on the film cooling effectiveness is investigated. The results exhibit that the film cooling technique could be an effective method for an active cooling of blunt-nosed bodies in hypersonic flows.

Collaboration


Dive into the Sung In Kim's collaboration.

Top Co-Authors

Avatar

Stephen Spence

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Charles Stuart

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Lee Galloway

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Hamidur Rahman

Islamic University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward Kilpatrick

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge