Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung-Jun Ahn is active.

Publication


Featured researches published by Sung-Jun Ahn.


Bone | 2015

CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo

Ju-Young Kim; Jung-Youl Min; Jong Min Baek; Sung-Jun Ahn; Hong Young Jun; Kwon-Ha Yoon; Min Kyu Choi; Myeung Su Lee; Jaemin Oh

Adipokines derived from adipocytes are important factors that act as circulating regulators of bone metabolism. C1q/tumor necrosis factor (TNF)-related Protein-3 (CTRP3) is a novel adipokine with multiple effects such as lowering glucose levels, inhibiting gluconeogenesis in the liver, and increasing angiogenesis and anti-inflammation. However, the effects and the mechanisms of CTRP3 on bone metabolism, which is regulated by osteoblasts and osteoclasts, have not been investigated. Here, we found that CTRP3 inhibited osteoclast differentiation induced by osteoclastogenic factors in bone marrow cell-osteoblast co-cultures, but did not affect the ratio of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) to osteoprotegerin (OPG) induced by osteoclastogenic factors in osteoblasts. We also found that CTRP3 inhibited osteoclast differentiation from mouse bone marrow macrophages (BMMs) induced by RANKL in a dose-dependent manner without cytotoxicity. Functionally, CTRP3 inhibited the F-actin formation and bone resorbing activity of mature osteoclasts. Pretreatment with CTRP3 significantly inhibited RANKL-induced expression of c-Fos and nuclear factor of activated T-cells (NFATc1), essential transcription factors for osteoclast development. Surprisingly, the activation of AMP-activated protein kinase (AMPK) was considerably increased by pretreatment with CTRP3 for 1h. The CTRP3-stimulated AMPK activation was also maintained during RANKL-induced osteoclastogenesis. CTRP3 did not affect RANKL-induced p38, ERK, JNK, Akt, IκB, CREB, and calcium signaling (Btk and PLCγ2). These results suggest that CTRP3 plays an important role as a negative regulator of RANKL-mediated osteoclast differentiation by acting as an inhibitor of NFATc1 activation through the AMPK signaling pathway. Furthermore, CTRP3 treatment reduced RANKL-induced osteoclast formation and bone destruction in mouse calvarial bone in vivo based on micro-CT and histologic analysis. In conclusion, these findings strongly suggest that CTRP3 deserves new evaluation as a potential treatment target in various bone diseases associated with excessive osteoclast differentiation and bone destruction.


Biochemical and Biophysical Research Communications | 2015

Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway.

Jong Min Baek; Sun-Hyang Park; Yoon-Hee Cheon; Sung-Jun Ahn; Myeung Su Lee; Jaemin Oh; Ju-Young Kim

Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis.


Phytotherapy Research | 2016

Protocatechuic Acid Attenuates Osteoclastogenesis by Downregulating JNK/c-Fos/NFATc1 Signaling and Prevents Inflammatory Bone Loss in Mice

Sun-Hyang Park; Ju-Young Kim; Yoon-Hee Cheon; Jong Min Baek; Sung-Jun Ahn; Kwon-Ha Yoon; Myeung Su Lee; Jaemin Oh

Protocatechuic acid (PCA) plays a critical role in nutritional metabolism; it is a major metabolite of anthocyanins, which are flavonoids with a range of health benefits. PCA has a variety of biological activities including anti‐oxidant, antiinflammatory, anti‐apoptosis, and anti‐microbial activities. However, the pharmacological effect of PCA, especially on osteoclastogenesis, remains unknown. We examined the effect of PCA on receptor activator of NF‐κB ligand (RANKL)‐induced osteoclast differentiation and bone resorption. PCA dose‐dependently inhibited RANKL‐induced osteoclast differentiation in mouse bone marrow macrophages (BMMs) and suppressed the bone‐resorbing activity of mature osteoclasts. At the molecular level, PCA suppressed RANKL‐induced phosphorylation of JNK among MAPKs only, without significantly affecting the early signaling pathway. PCA also suppressed RANKL‐stimulated expression of c‐Fos and nuclear factor of activated T cells c1 (NFATc1) at the mRNA and protein levels, without altering c‐Fos mRNA expression. Additionally, PCA down‐regulated the expression of downstream osteoclastogenesis‐related genes including β3‐integrin, DC‐STAMP, OC‐STAMP, Atp6v0d2, CTR, and CtsK. Mice treated with PCA efficiently recovered from lipopolysaccharide‐induced bone loss in vivo. Thus, PCA inhibits RANKL‐induced osteoclast differentiation and function by suppressing JNK signaling, c‐Fos stability, and expression of osteoclastic marker genes. These results suggest that PCA could be useful in treatment of inflammatory bone disorders. Copyright


BMC Complementary and Alternative Medicine | 2015

Stauntonia hexaphylla (Lardizabalaceae) leaf methanol extract inhibits osteoclastogenesis and bone resorption activity via proteasome-mediated degradation of c-Fos protein and suppression of NFATc1 expression

Yoon-Hee Cheon; Jong Min Baek; Sun-Hyang Park; Sung-Jun Ahn; Myeung Su Lee; Jaemin Oh; Ju-Young Kim

BackgroundNatural plants, including common vegetables and fruits, have been recognized as essential sources for drug discovery and the development of new, safe, and economical medicaments. Stauntonia hexaphylla (Lardizabalaceae) is widely distributed in Korea, Japan, and China, and is a popular herbal supplement in Korean and Chinese folk medicine owing to its analgesic, sedative, and diuretic properties. However, the exact pharmacological effects of S. hexaphylla extract, particularly its effect on osteoclastogenesis, are not known.MethodsOsteoclast differentiation and function were identified with tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay, and the underling mechanisms were determined by real-time RT-PCR and western blot analysis.ResultsS. hexaphylla was found to inhibit early-stage receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation in bone marrow macrophages (BMMs) without cytotoxicity and bone-resorbing activity in mature osteoclasts in a dose-dependent manner. This S. hexaphylla-mediated blockade of osteoclastogenesis involved abrogation of the NF-κB, ERK, and c-Src-Btk-PLCγ2 calcium signal pathways. Interestingly, we found that S. hexaphylla down-regulated RANKL-associated c-Fos protein induction by suppressing its translation. Furthermore, ectopic overexpression of c-Fos and NFATc1 rescued the inhibition of osteoclast differentiation by S. hexaphylla. Furthermore, S. hexaphylla inhibited the c-Fos- and NFATc1-regulated expression of genes required for osteoclastogenesis, such as TRAP, OSCAR, β3-integrin, ATP6v0d2, and CtsK.ConclusionsThese findings suggest that S. hexaphylla might be useful for the development of new anti-osteoporosis agents.


Molecules | 2014

Aconitum pseudo-laeve var. erectum Inhibits Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclastogenesis via the c-Fos/nuclear Factor of Activated T-Cells, Cytoplasmic 1 Signaling Pathway and Prevents Lipopolysaccharide-Induced Bone Loss in Mice

Jong Min Baek; Ju-Young Kim; Yoon-Hee Cheon; Sun-Hyang Park; Sung-Jun Ahn; Kwon-Ha Yoon; Jaemin Oh; Myeung Su Lee

Aconitum pseudo-laeve var. erectum (APE) has been widely shown in herbal medicine to have a therapeutic effect on inflammatory conditions. However, there has been no evidence on whether the extract of APE is involved in the biological bone metabolism process, particularly osteoclast-mediated bone resorption. In this study, we confirmed that the administration of APE could restore normal skeletal conditions in a murine model of lipopolysaccharide (LPS)-induced bone loss via a decrease in the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio and osteoclast number. We then investigated the effect of APE on the RANKL-induced formation and function of osteoclasts to elucidate its underlying molecular mechanisms. APE suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive cells, as well as the bone-resorbing activity of mature osteoclasts. Furthermore, APE attenuated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and c-Fos without affecting any early signal pathway of osteoclastogenesis. Subsequently, APE significantly downregulated the expression of various genes exclusively expressed in osteoclasts. These results demonstrate that APE restores LPS-induced bone loss through a decrease of the serum RANKL/OPG ratio, and inhibits osteoclast differentiation and function, suggesting the promise of APE as a potential cure for various osteoclast-associated bone diseases.


Evidence-based Complementary and Alternative Medicine | 2014

Dual Effect of Chrysanthemum indicum Extract to Stimulate Osteoblast Differentiation and Inhibit Osteoclast Formation and Resorption In Vitro

Jong Min Baek; Ju-Young Kim; Yoon-Hee Cheon; Sun-Hyang Park; Sung-Jun Ahn; Kwon-Ha Yoon; Jae-Min Oh; Myeung Su Lee

The risk of bone-related diseases increases due to the imbalance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively. The goal in the development of antiosteoporotic treatments is an agent that will improve bone through simultaneous osteoblast stimulation and osteoclast inhibition without undesirable side effects. To achieve this goal, numerous studies have been performed to identify novel approaches using natural oriental herbs to treat bone metabolic diseases. In the present study, we investigated the effect of Chrysanthemum indicum extract (CIE) on the differentiation of osteoclastic and osteoblastic cells. CIE inhibited the formation of TRAP-positive mature osteoclasts and of filamentous-actin rings and disrupted the bone-resorbing activity of mature osteoclasts in a dose-dependent manner. CIE strongly inhibited Akt, GSK3β, and IκB phosphorylation in RANKL-stimulated bone marrow macrophages and did not show any effects on MAP kinases, including p38, ERK, and JNK. Interestingly, CIE also enhanced primary osteoblast differentiation via upregulation of the expression of alkaline phosphatase and the level of extracellular calcium concentrations during the early and terminal stages of differentiation, respectively. Our results revealed that CIE could have a potential therapeutic role in bone-related disorders through its dual effects on osteoclast and osteoblast differentiation.


Molecules | 2016

Dendrobium moniliforme Exerts Inhibitory Effects on Both Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation in Vitro and Lipopolysaccharide-Induced Bone Erosion in Vivo

Jong Min Baek; Ju-Young Kim; Sung-Jun Ahn; Yoon-Hee Cheon; Miyoung Yang; Jae-Min Oh; Min Kyu Choi

Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.


Journal of Bone and Mineral Research | 2016

WHI-131 Promotes Osteoblast Differentiation and Prevents Osteoclast Formation and Resorption in Mice

Yoon-Hee Cheon; Ju-Young Kim; Jong Min Baek; Sung-Jun Ahn; Hong Young Jun; Munkhsoyol Erkhembaatar; Min Seuk Kim; Myeung Su Lee; Jaemin Oh

The small molecule WHI‐131 is a potent therapeutic agent with anti‐inflammatory, antiallergic, and antileukemic potential. However, the regulatory effects of WHI‐131 on osteoblast and osteoclast activity are unclear. We examined the effects of WHI‐131 on osteoblast and osteoclast differentiation with respect to bone remodeling. The production of receptor activator of nuclear factor kappa‐B ligand (RANKL) by osteoblasts in response to interleukin (IL)‐1 or IL‐6 stimulation decreased by 56.8% or 50.58%, respectively, in the presence of WHI‐131. WHI‐131 also abrogated the formation of mature osteoclasts induced by IL‐1 or IL‐6 stimulation. Moreover, WHI‐131 treatment decreased RANKL‐induced osteoclast differentiation of bone marrow‐derived macrophages, and reduced the resorbing activity of mature osteoclasts. WHI‐131 further decreased the mRNA and protein expression levels of c‐Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) by almost twofold, and significantly downregulated the mRNA expression of the following genes: tartrate‐resistant acid phosphatase (TRAP), osteoclast‐associated receptor (OSCAR), DC‐STAMP, OC‐STAMP, ATP6v0d2, and cathepsin K (CtsK) compared with the control group. WHI‐131 further suppressed the phosphorylation of protein kinase B (Akt) and degradation of inhibitor of kappa B (IκB); Ca2+ oscillation was also affected, and phosphorylation of the C‐terminal Src kinase (c‐Src)–Bruton agammaglobulinemia tyrosine kinase (Btk)–phospholipase C gamma 2 (PLCγ2) (c‐Src‐Btk‐PLCg2 calcium signaling pathway) was inhibited following WHI‐131 treatment. The Janus kinase‐signal transducer and activator of transcription (JAK‐STAT) signaling pathway was activated by WHI‐131, accompanied by phosphorylation of STAT3 Ser727 and dephosphorylation of STAT6. In osteoblasts, WHI‐131 caused an approximately fourfold increase in alkaline phosphatase activity and Alizarin Red staining intensity. Treatment with WHI‐131 increased the mRNA expression levels of genes related to osteoblast differentiation, and induced the phosphorylation of Akt, p38, and Smad1/5/8. Furthermore, 5‐week‐old ICR mice treated with WHI‐131 exhibited antiresorbing effects in a lipopolysaccharide‐induced calvaria bone loss model in vivo and increased bone‐forming activity in a calvarial bone formation model. Therefore, the results of this study show that WHI‐131 plays a dual role by inhibiting osteoclast differentiation and promoting osteoblast differentiation. Thus, WHI‐131 could be a useful pharmacological agent to treat osteoporosis by promoting bone growth and inhibiting resorption.


Biochemical and Biophysical Research Communications | 2016

Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss.

Yoon-Hee Cheon; Ju-Young Kim; Jong Min Baek; Sung-Jun Ahn; Hong-Seob So; Jaemin Oh

Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine-threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine(727). Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis.


The American Journal of Chinese Medicine | 2015

The Inhibitory Effect of Angelica tenuissima Water Extract on Receptor Activator of Nuclear Factor-Kappa-B Ligand-Induced Osteoclast Differentiation and Bone Resorbing Activity of Mature Osteoclasts

Sung-Jun Ahn; Jong Min Baek; Yoon-Hee Cheon; Sun-Hyang Park; Myeung Su Lee; Jae-Min Oh; Ju-Young Kim

Angelica tenuissima has been traditionally used in oriental medicine for its therapeutic effects in headache, toothache, and flu symptoms. It also exerts anti-inflammatory activity via the inhibition of the expression of cyclooxygenase-2 (COX-2). However, the effect of Angelica tenuissima on osteoclast differentiation has not been identified until recently. In this study, we first confirmed that Angelica tenuissima water extract (ATWE) significantly interrupted the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) in a dose-dependent manner without any cytotoxicity. Next, we clarified the underlying mechanisms linking the suppression effects of ATWE on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. At the molecular level, ATWE induced the dephosphorylation of c-Jun N-terminal kinase (JNK) and Akt and decreased the degradation of IκB in RANKL-dependent early signaling pathways. Subsequently, ATWE caused impaired activation of the protein and mRNA levels of c-Fos and nuclear factor of activated T cell c1 (NFATc1). Moreover, the disassembly of filamentous actin (F-actin) ring and anti-resorptive activity of mature osteoclasts were triggered by ATWE treatment. Although ATWE did not enhance osteogenesis in primary osteoblasts, our results showed that ATWE is a potential candidate for anti-resorptive agent in osteoporosis, a common metabolic bone disorder.

Collaboration


Dive into the Sung-Jun Ahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge