Sung-Kook Hong
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sung-Kook Hong.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Sung-Kook Hong; Igor B. Dawid
Establishment of left–right asymmetry in vertebrates requires nodal, Wnt-PCP and FGF signaling and involves ciliogenesis in a laterality organ. Effector genes through which FGF signaling affects laterality have not been described. We isolated the zebrafish ier2 and fibp1 genes as FGF target genes and show that their protein products interact. Knock down of these factors interferes with establishment of organ laterality and causes defective cilia formation in Kupffers Vesicle, the zebrafish laterality organ. Cilia are also lost after suppression of FGF8, but can be rescued by injection of ier2 and fibp1 mRNA. We conclude that Ier2 and Fibp1 mediate FGF signaling in ciliogenesis in Kupffers Vesicle and in the establishment of laterality in the zebrafish embryo.
Oncogene | 2012
Gulay Bulut; Sung-Kook Hong; Kevin Chen; Elspeth M. Beauchamp; Said Rahim; George Kosturko; Eric Glasgow; Sivanesan Dakshanamurthy; Lee Hs; Ira O. Daar; Jeffrey A. Toretsky; Chand Khanna; Aykut Üren
Ezrin is a multifunctional protein that connects the actin cytoskeleton to the extracellular matrix through transmembrane proteins. High ezrin expression is associated with lung metastasis and poor survival in cancer. We screened small molecule libraries for compounds that directly interact with ezrin protein using surface plasmon resonance to identify lead compounds. The secondary functional assays used for lead compound selection included ezrin phosphorylation as measured by immunoprecipitation and in vitro kinase assays, actin binding, chemotaxis, invasion into an endothelial cell monolayer, zebrafish and Xenopus embryonic development, mouse lung organ culture and an in vivo lung metastasis model. Two molecules, NSC305787 and NSC668394, that directly bind to ezrin with low micromolar affinity were selected based on inhibition of ezrin function in multiple assays. They inhibited ezrin phosphorylation, ezrin–actin interaction and ezrin-mediated motility of osteosarcoma (OS) cells in culture. NSC305787 mimicked the ezrin morpholino phenotype, and NSC668394 caused a unique developmental defect consistent with reduced cell motility in zebrafish. Following tail vein injection of OS cells into mice, both molecules inhibited lung metastasis of ezrin-sensitive cells, but not ezrin-resistant cells. The small molecule inhibitors NSC305787 and NSC668394 demonstrate a novel targeted therapy that directly inhibits ezrin protein as an approach to prevent tumor metastasis.
Developmental Biology | 2008
Chong Hyun Shin; Won-Suk Chung; Sung-Kook Hong; Elke A. Ober; Heather Verkade; Holly A. Field; Jan Huisken; Didier Y. R. Stainier
In zebrafish, the endoderm originates at the blastula stage from the most marginal blastomeres. Through a series of complex morphogenetic movements and differentiation events, the endodermal germ layer gives rise to the epithelial lining of the digestive tract as well as its associated organs such as the liver, pancreas, and swim bladder. How endodermal cells differentiate into distinct cell types such as hepatocytes or endocrine and exocrine pancreatic cells remains a major question. In a forward genetic screen for genes regulating endodermal organ development, we identified mutations at the shiri locus that cause defects in the development of a number of endodermal organs including the liver and pancreas. Detailed phenotypic analyses indicate that these defects are partially due to a reduction in endodermal expression of the hairy/enhancer of split-related gene, her5, at mid to late gastrulation stages. Using the Tg(0.7her5:EGFP)(ne2067) line, we show that her5 is expressed in the endodermal precursors that populate the pharyngeal region as well as the organ-forming region. We also find that knocking down her5 recapitulates some of the endodermal phenotypes of shiri mutants, further revealing the role of her5 in endoderm development. Positional cloning reveals that shiri encodes Med12, a regulatory subunit of the transcriptional Mediator complex recently associated with two human syndromes. Additional studies indicate that Med12 modulates the ability of Casanova/Sox32 to induce sox17 expression. Thus, detailed phenotypic analyses of embryos defective in a component of the Mediator complex have revealed new insights into discrete aspects of vertebrate endoderm development, and provide possible explanations for the craniofacial and digestive system defects observed in humans with mutations in MED12.
Oncogene | 2008
Han Su; Kwak Th; Her Kh; Cho Yh; Chel Hun Choi; Lee Hj; Sung-Kook Hong; Young-Kwon Park; Yong-Seok Kim; Kim Ta; Seung-Jin Kim
The carcinoembryonic antigen (CEAs) family consists of a large group of evolutionarily and structurally divergent glycoproteins. The transforming growth factor-β (TGF-β) signaling pathway has been implicated in the stimulation of CEA secretion in TGF-β-sensitive colon cells, thereby possibly modulating cell adhesion and differentiation. However, the specific CEAs targeted by TGF-β signaling or underlying mechanism of the expression of CEAs has not yet been clarified. In this study, we investigated the specific CEAs targeted by the TGF-β signaling pathway. In nine human gastric cancer cell lines examined, TGF-β-responsive cell lines showed positive expression of CEAs. Expression patterns of CEA proteins correlated well with the level of CEA (CEACAM5) and CEACAM6 transcripts in these cell lines, but CEACAM1 expression was not observed in all of these cells. To investigate the role of TGF-β signaling in CEA expression, we selected two TGF-β unresponsive gastric cancer cell lines; SNU638 cells that contain a mutation in the TGF-β type II receptor and SNU484 cells that express low to undetectable level of the TGF-β pathway intermediate protein, Smad3. Restoration of TGF-β signaling in these cells induced expression of the CEAs and increased activity of both CEA (CEACAM5) and CEACAM6 promoters. CEA expression was observed in the epithelium of the stomach of wild-type mice, but was markedly decreased in Smad3 null mice. These findings suggest that CEA (CEACAM5) and CEACAM6 are major target genes for Smad3-mediated TGF-β signaling.
Mechanisms of Development | 2002
Sung-Kook Hong; Cheol-Hee Kim; Kyeong-Won Yoo; Hyung-Seok Kim; Tetsuhiro Kudoh; Igor B. Dawid; Tae-Lin Huh
A complete cDNA of a novel zebrafish gene named onecut has been isolated; this gene encodes a protein of 446 amino acids with a Cut domain (73 amino acid residues) and a homeodomain. The Cut domain of zebrafish Onecut is highly similar to those in mammalian hepatocyte nuclear factor-6 and Drosophila Onecut, sharing 90 and 88% amino acid identity, respectively. The expression of zebrafish onecut is restricted to neuronal cells, being first detected in trigeminal ganglia neurons at the end of gastrulation. By the 1-somite stage, onecut expression has begun in primary neurons of the lateral stripes in the neural plate, and appeared in neuronal cells of the medial stripes at the 2-somite stage. By the 4-somite stage, onecut expression expanded to the intermediate stripes and to subsets of neuronal cells in the midbrain and hindbrain. Subsequently, onecut expression intensified in the lateral region of midbrain and hindbrain, yet no onecut-positive cells were seen in the telencephalon. By 24hpf, onecut transcripts remained abundant in the spinal cord but were no longer detectable in differentiated Rohon-Beard sensory neurons. The expression of onecut was greatly increased in the neural mutant mindbomb, while being decreased in narrowminded.
Development | 2011
Sung-Kook Hong; Moon Kyoo Jang; Jamie L. Brown; Alison A. McBride; Benjamin Feldman
Vertebrate mesoderm and endoderm formation requires signaling by Nodal-related ligands from the TGFβ superfamily. The factors that initiate Nodal-related gene transcription are unknown in most species and the relative contributions of Nodal-related ligands from embryonic, extraembryonic and maternal sources remain uncertain. In zebrafish, signals from the yolk syncytial layer (YSL), an extraembryonic domain, are required for mesoderm and endoderm induction, and YSL expression of nodal-related 1 (ndr1) and ndr2 accounts for a portion of this activity. A variable requirement of maternally derived Ndr1 for dorsal and anterior axis formation has also been documented. Here we show that Mxtx2 directly activates expression of ndr2 via binding to its first intron and is required for ndr2 expression in the YSL. Mxtx2 is also required for the Nodal signaling-independent expression component of the no tail a (ntla) gene, which is required for posterior (tail) mesoderm formation. Therefore, Mxtx2 defines a new pathway upstream of Nodal signaling and posterior mesoderm formation. We further show that the co-disruption of extraembryonic Ndr2, extraembryonic Ndr1 and maternal Ndr1 eliminates endoderm and anterior (head and trunk) mesoderm, recapitulating the loss of Nodal signaling phenotype. Therefore, non-embryonic sources of Nodal-related ligands account for the complete spectrum of early Nodal signaling requirements. In summary, the induction of mesoderm and endoderm depends upon the combined actions of Mxtx2 and Nodal-related ligands from non-embryonic sources.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Jamie L. Brown; Mirit Snir; Houtan Noushmehr; Martha Kirby; Sung-Kook Hong; Abdel G. Elkahloun; Benjamin Feldman
A major goal for developmental biologists is to define the behaviors and molecular contents of differentiating cells. We have devised a strategy for isolating cells from diverse embryonic regions and stages in the zebrafish, using computer-guided laser photoconversion of injected Kaede protein and flow cytometry. This strategy enabled us to perform a genome-wide transcriptome comparison of germ layer precursor cells. Mesendoderm and ectoderm precursors cells isolated by this method differentiated appropriately in transplantation assays. Microarray analysis of these cells reidentified known genes at least as efficiently as previously reported strategies that relied on artificial mesendoderm activation or inhibition. We also identified a large set of uncharacterized mesendoderm-enriched genes as well as ectoderm-enriched genes. Loss-of-function studies revealed that one of these genes, the MAP kinase inhibitor dusp4, is essential for early development. Embryos injected with antisense morpholino oligonucleotides that targeted Dusp4 displayed necrosis of head tissues. Marker analysis during late gastrulation revealed a specific loss of sox17, but not of other endoderm markers, and analysis at later stages revealed a loss of foregut and pancreatic endoderm. This specific loss of sox17 establishes a new class of endoderm specification defect.
PLOS ONE | 2011
M. Cecilia Cirio; Zhao Hui; Caroline E. Haldin; Chiara Cianciolo Cosentino; Carsten Stuckenholz; Xiongfong Chen; Sung-Kook Hong; Igor B. Dawid; Neil A. Hukriede
In the vertebrate embryo, the kidney is derived from the intermediate mesoderm. The LIM-class homeobox transcription factor lhx1 is expressed early in the intermediate mesoderm and is one of the first genes to be expressed in the nephric mesenchyme. In this study, we investigated the role of Lhx1 in specification of the kidney field by either overexpressing or depleting lhx1 in Xenopus embryos or depleting lhx1 in an explant culture system. By overexpressing a constitutively-active form of Lhx1, we established its capacity to expand the kidney field during the specification stage of kidney organogenesis. In addition, the ability of Lhx1 to expand the kidney field diminishes as kidney organogenesis transitions to the morphogenesis stage. In a complimentary set of experiments, we determined that embryos depleted of lhx1, show an almost complete loss of the kidney field. Using an explant culture system to induce kidney tissue, we confirmed that expression of genes from both proximal and distal kidney structures is affected by the absence of lhx1. Taken together our results demonstrate an essential role for Lhx1 in driving specification of the entire kidney field from the intermediate mesoderm.
Biochemical and Biophysical Research Communications | 2003
Su-Hyeon Park; Sang-Yeob Yeo; Kyeong-Won Yoo; Sung-Kook Hong; Suman Lee; Myungchull Rhee; Ajay B. Chitnis; Cheol-Hee Kim
We have isolated a basic helix-loop-helix (bHLH) gene homologous to the Drosophila proneural gene atonal, termed zath3, from zebrafish. zath3 is expressed in neurons of the central nervous system and in subsets of cranial ganglia. Zebrafish mindbomb (mib) mutants have a higher density of zath3 expressing cells and narrowminded (nrd) mutants lack zath3 expression in a domain corresponding to primary sensory neurons showing that the expression of zath3 is regulated by both mib and nrd. Injection of synthetic zath3 RNA into zebrafish embryos expands the neural plate size, promotes ectopic expression of neuronal markers, and partially rescues the deficit of sensory neurons seen in nrd mutants. Interfering with zath3 function using antisense morpholino oligonucleotides (MO) has no significant effect on early neurogenesis. However, a double knock down of zath3 and neurogenin1 (ngn1), another atonal homologue, with morpholinos (MOs) leads to more severe defects in neurogenesis than are seen with ngn1 MO alone: a subtle reduction of motor and inter-neurons, and an almost complete loss all cranial ganglia. This study suggests that zath3 and ngn1 have partially overlapping roles in early neurogenesis.
PLOS ONE | 2008
Sung-Kook Hong; Michael Tsang; Igor B. Dawid
Background Among Myc family genes, c-Myc is known to have a role in neural crest specification in Xenopus and in craniofacial development in the mouse. There is no information on the function of other Myc genes in neural crest development, or about any developmental role of zebrafish Myc genes. Principal Findings We isolated the zebrafish mych (myc homologue) gene. Knockdown of mych leads to severe defects in craniofacial development and in certain other tissues including the eye. These phenotypes appear to be caused by cell death in the neural crest and in the eye field in the anterior brain. Significance Mych is a novel factor required for neural crest cell survival in zebrafish.