Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung-Kwan Mo is active.

Publication


Featured researches published by Sung-Kwan Mo.


Science | 2009

Experimental realization of a three-dimensional topological insulator, Bi2Te3.

Yulin Chen; James G. Analytis; Jiun-Haw Chu; Zhongkai Liu; Sung-Kwan Mo; Xiao-Liang Qi; Haijun Zhang; D. H. Lu; Xi Dai; Zhong Fang; Shou-Cheng Zhang; I. R. Fisher; Z. Hussain; Zhi-Xun Shen

Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi{sub 2}Te{sub 3} with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi{sub 2}Te{sub 3} is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi{sub 2}Te{sub 3} also points to promising potential for high-temperature spintronics applications.Topological Insulators Topological insulators are a recently discovered state of matter, in which the bulk is an insulator while the surface is metallic with counterpropagating spin states. The surface states are protected by the topology, or structure, of the Fermi surface in the bulk gap and are described by a Dirac cone showing linear dispersion behavior meeting at the Dirac point. Chen et al. (p. 178, published online 11 June) provide a comprehensive photoemission study on Bi2Te3 showing that it too falls into the category of topological band insulators. Moreover, there is just a single surface state with a single Dirac point in the photoemission spectrum. The identification of a material with a single Dirac point removes the ambiguity arising from multiple surface states and provides an ideal test-bed to probe the physics of these exotic new materials. Bi2Te3 is identified as a three-dimensional topological insulator with a single metallic surface state. Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi2Te3 also points to promising potential for high-temperature spintronics applications.


Science | 2014

Discovery of a Three-dimensional Topological Dirac Semimetal, Na3Bi

Zhongkai Liu; Bo Zhou; Yong Zhang; Zhijun Wang; Hongming Weng; D. Prabhakaran; Sung-Kwan Mo; Zhi-Xun Shen; Zhong Fang; Xi Dai; Zahid Hussain; Yulin Chen

A 3D Graphene? Discoveries of materials with exciting electronic properties have propelled condensed matter physics over the past decade. Two of the best-known examples, graphene and topological insulators, have something in common: a linear energy-momentum relationship—the Dirac dispersion—in their two-dimensional (2D) electronic states. Topological insulators also have a more mundane aspect of their electronic structure, characterized by a band gap. Another class of materials, topological Dirac semimetals, has been proposed that has a linear dispersion along all three momentum directions—a bulk Dirac cone; these materials are predicted to have intriguing electronic properties and to be related to other exotic states through quantum phase transitions. Liu et al. (p. 864, published online 16 January) detected such a state in the compound Na3Bi by using photoemission spectroscopy. Angle-resolved photoemission spectroscopy is used to detect bulk Dirac cones in a three-dimensional analog of graphene. Three-dimensional (3D) topological Dirac semimetals (TDSs) represent an unusual state of quantum matter that can be viewed as “3D graphene.” In contrast to 2D Dirac fermions in graphene or on the surface of 3D topological insulators, TDSs possess 3D Dirac fermions in the bulk. By investigating the electronic structure of Na3Bi with angle-resolved photoemission spectroscopy, we detected 3D Dirac fermions with linear dispersions along all momentum directions. Furthermore, we demonstrated the robustness of 3D Dirac fermions in Na3Bi against in situ surface doping. Our results establish Na3Bi as a model system for 3D TDSs, which can serve as an ideal platform for the systematic study of quantum phase transitions between rich topological quantum states.


Nature Nanotechnology | 2013

Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2

Yi Zhang; Tay-Rong Chang; Bo Zhou; Yong-Tao Cui; Hao Yan; Zhongkai Liu; F. Schmitt; James J. Lee; R. C. Moore; Yulin Chen; Hsin Lin; Horng-Tay Jeng; Sung-Kwan Mo; Zahid Hussain; A. Bansil; Zhi-Xun Shen

Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a large enhancement in photoluminescence quantum efficiency and a potential route to valleytronics in atomically thin layers of transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te), which are closely related to the indirect-to-direct bandgap transition in monolayers. Here, we report the first direct observation of the transition from indirect to direct bandgap in monolayer samples by using angle-resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy. The band structure measured experimentally indicates a stronger tendency of monolayer MoSe2 towards a direct bandgap, as well as a larger gap size, than theoretically predicted. Moreover, our finding of a significant spin-splitting of ∼ 180 meV at the valence band maximum of a monolayer MoSe2 film could expand its possible application to spintronic devices.


Nature Materials | 2014

A stable three-dimensional topological Dirac semimetal Cd3As2

Zhongkai Liu; Juan Jiang; Bin Zhou; Zj Wang; Yi Zhang; Hongming Weng; D. Prabhakaran; Sung-Kwan Mo; Hailin Peng; Pavel Dudin; T. K. Kim; M. Hoesch; Zhong Fang; Xi Dai; Zhi-Xun Shen; D. L. Feng; Zahid Hussain; Yulin Chen

Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals, axion insulators and topological superconductors), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, β-cristobalite BiO2 (ref. 3) and Na3Bi (refs 4, 5), Cd3As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.


Nature Nanotechnology | 2011

Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning

Desheng Kong; Yulin Chen; Judy J. Cha; Qianfan Zhang; James G. Analytis; Keji Lai; Zhongkai Liu; Seung Sae Hong; Kristie J. Koski; Sung-Kwan Mo; Z. Hussain; I. R. Fisher; Zhi-Xun Shen; Yi Cui

Topological insulators exhibit a bulk energy gap and spin-polarized surface states that lead to unique electronic properties, with potential applications in spintronics and quantum information processing. However, transport measurements have typically been dominated by residual bulk charge carriers originating from crystal defects or environmental doping, and these mask the contribution of surface carriers to charge transport in these materials. Controlling bulk carriers in current topological insulator materials, such as the binary sesquichalcogenides Bi2Te3, Sb2Te3 and Bi2Se3, has been explored extensively by means of material doping and electrical gating, but limited progress has been made to achieve nanostructures with low bulk conductivity for electronic device applications. Here we demonstrate that the ternary sesquichalcogenide (Bi(x)Sb(1-x))2Te3 is a tunable topological insulator system. By tuning the ratio of bismuth to antimony, we are able to reduce the bulk carrier density by over two orders of magnitude, while maintaining the topological insulator properties. As a result, we observe a clear ambipolar gating effect in (Bi(x)Sb(1-x))2Te3 nanoplate field-effect transistor devices, similar to that observed in graphene field-effect transistor devices. The manipulation of carrier type and density in topological insulator nanostructures demonstrated here paves the way for the implementation of topological insulators in nanoelectronics and spintronics.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition

M. Yi; D. H. Lu; Jiun-Haw Chu; James G. Analytis; A. P. Sorini; A. F. Kemper; Brian Moritz; Sung-Kwan Mo; R. G. Moore; Makoto Hashimoto; Wei-Sheng Lee; Z. Hussain; T. P. Devereaux; I. R. Fisher; Zhi-Xun Shen

Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high-temperature superconductors. Similarly, the new iron-based high-temperature superconductors exhibit a tetragonal-to-orthorhombic structural transition (i.e., a broken C4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here, we present an angle-resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe1-xCox)2As2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant dxz and dyz character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (TS) precedes the magnetic transition (TSDW), an anisotropic splitting is observed to develop above TSDW, indicating that it is specifically associated with TS. For unstressed crystals, the band splitting is observed close to TS, whereas for stressed crystals, the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.


Nature | 2008

Electronic structure of the iron-based superconductor LaOFeP

D. H. Lu; M. Yi; Sung-Kwan Mo; As Erickson; James G. Analytis; Jiun-Haw Chu; David J. Singh; Z. Hussain; T. H. Geballe; I. R. Fisher; Zhi-Xun Shen

The recent discovery of superconductivity in the iron oxypnictide family of compounds has generated intense interest. The layered crystal structure with transition-metal ions in planar square-lattice form and the discovery of spin-density-wave order near 130 K (refs 10, 11) seem to hint at a strong similarity with the copper oxide superconductors. An important current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories, distinguished by the underlying band structure, have been put forward: a local-moment antiferromagnetic ground state in the strong-coupling approach, and an itinerant ground state in the weak-coupling approach. The first approach stresses on-site correlations, proximity to a Mott-insulating state and, thus, the resemblance to the high-transition-temperature copper oxides, whereas the second approach emphasizes the itinerant-electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. The debate over the two approaches is partly due to the lack of conclusive experimental information on the electronic structures. Here we report angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (superconducting transition temperature, Tc = 5.9 K), the first-reported iron-based superconductor. Our results favour the itinerant ground state, albeit with band renormalization. In addition, our data reveal important differences between these and copper-based superconductors.


Scientific Reports | 2012

Fermi velocity engineering in graphene by substrate modification

Choongyu Hwang; David Siegel; Sung-Kwan Mo; William Regan; Ariel Ismach; Yuegang Zhang; Alex Zettl; Alessandra Lanzara

The Fermi velocity, vF, is one of the key concepts in the study of a material, as it bears information on a variety of fundamental properties. Upon increasing demand on the device applications, graphene is viewed as a prototypical system for engineering vF. Indeed, several efforts have succeeded in modifying vF by varying charge carrier concentration, n. Here we present a powerful but simple new way to engineer vF while holding n constant. We find that when the environment embedding graphene is modified, the vF of graphene is (i) inversely proportional to its dielectric constant, reaching vF ~ 2.5×106 m/s, the highest value for graphene on any substrate studied so far and (ii) clearly distinguished from an ordinary Fermi liquid. The method demonstrated here provides a new route toward Fermi velocity engineering in a variety of two-dimensional electron systems including topological insulators.


Science | 2011

From a single-band metal to a high-temperature superconductor via two thermal phase transitions.

Ruihua He; Makoto Hashimoto; H. Karapetyan; J. D. Koralek; James Hinton; J. P. Testaud; V. Nathan; Yoshiyuki Yoshida; Hong Yao; K. Tanaka; W. Meevasana; R. G. Moore; D. H. Lu; Sung-Kwan Mo; Motoyuki Ishikado; H. Eisaki; Z. Hussain; T. P. Devereaux; Steven A. Kivelson; J. Orenstein; A. Kapitulnik; Zhi-Xun Shen

Three techniques are used to probe the pseudogap state of cuprate high-temperature superconductors. The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at T* of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (Tc), entangled in an energy-momentum–dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.


Nature Physics | 2016

Characterization of collective ground states in single-layer NbSe2

Miguel M. Ugeda; Aaron J. Bradley; Yi Zhang; Seita Onishi; Yi Chen; Wei Ruan; Claudia Ojeda-Aristizabal; Hyejin Ryu; Mark T. Edmonds; Hsin-Zon Tsai; Alexander Riss; Sung-Kwan Mo; Dunghai Lee; Alex Zettl; Zahid Hussain; Zhi-Xun Shen; Michael F. Crommie

What happens to correlated electronic phases—superconductivity and charge density wave ordering—as a material is thinned? Experiments show that both can remain intact in just a single layer of niobium diselenide.

Collaboration


Dive into the Sung-Kwan Mo's collaboration.

Top Co-Authors

Avatar

Zhi-Xun Shen

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Z. Hussain

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. H. Lu

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhongkai Liu

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ruihua He

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Yi

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Choongyu Hwang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Yi Zhang

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge