Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung-Liang Yu is active.

Publication


Featured researches published by Sung-Liang Yu.


Cancer Cell | 2008

MicroRNA Signature Predicts Survival and Relapse in Lung Cancer

Sung-Liang Yu; Hsuan Yu Chen; Gee Chen Chang; Chih Yi Chen; Huei-Wen Chen; Sher Singh; Chiou Ling Cheng; Chong-Jen Yu; Yung Chie Lee; Han Shiang Chen; Te Jen Su; Ching Cheng Chiang; Han Ni Li; Qi Sheng Hong; Hsin Yuan Su; Chun Chieh Chen; Wan Jiun Chen; Chun Chi Liu; Wing Kai Chan; Wei J. Chen; Ker-Chau Li; Jeremy J.W. Chen; Pan-Chyr Yang

We investigated whether microRNA expression profiles can predict clinical outcome of NSCLC patients. Using real-time RT-PCR, we obtained microRNA expressions in 112 NSCLC patients, which were divided into the training and testing sets. Using Cox regression and risk-score analysis, we identified a five-microRNA signature for the prediction of treatment outcome of NSCLC in the training set. This microRNA signature was validated by the testing set and an independent cohort. Patients with high-risk scores in their microRNA signatures had poor overall and disease-free survivals compared to the low-risk-score patients. This microRNA signature is an independent predictor of the cancer relapse and survival of NSCLC patients.


Journal of Clinical Oncology | 2012

Pretreatment Epidermal Growth Factor Receptor (EGFR) T790M Mutation Predicts Shorter EGFR Tyrosine Kinase Inhibitor Response Duration in Patients With Non–Small-Cell Lung Cancer

Kang-Yi Su; Hsuan-Yu Chen; Ker-Chau Li; Min-Liang Kuo; James Chih-Hsin Yang; Wing-Kai Chan; Bing-Ching Ho; Gee-Chen Chang; Jin-Yuan Shih; Sung-Liang Yu; Pan-Chyr Yang

PURPOSE Patients with non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR)-activating mutations have excellent response to EGFR tyrosine kinase inhibitors (TKIs), but T790M mutation accounts for most TKI drug resistance. This study used highly sensitive methods to detect T790M before and after TKI therapy and investigated the association of T790M and its mutation frequencies with clinical outcome. PATIENTS AND METHODS Direct sequencing, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and next-generation sequencing (NGS) were used to assess T790M in the following two cohorts of patients with NSCLC: TKI-naive patients (n = 107) and TKI-treated patients (n = 85). Results were correlated with TKI treatment response and survival. RESULTS MALDI-TOF MS was highly sensitive in detecting and quantifying the frequency of EGFR-activating mutations and T790M (detection limits, 0.4% to 2.2%). MALDI-TOF MS identified more T790M than direct sequencing in TKI-naive patients with NSCLC (27 of 107 patients, 25.2% v three of 107 patients, 2.8%, respectively; P < .001) and in TKI-treated patients (before TKI: 23 of 73 patients, 31.5% v two of 73 patients, 2.7%, respectively; P < .001; and after TKI: 10 of 12 patients, 83.3% v four of 12 patients, 33.3%, respectively; P = .0143). The EGFR mutations and their frequencies were confirmed by NGS. T790M was an independent predictor of decreased progression-free survival (PFS) in patients with NSCLC who received TKI treatment (P < .05, multivariate Cox regression). CONCLUSION T790M may not be a rare event before or after TKI therapy in patients with NSCLC with EGFR-activating mutations. The pretreatment T790M mutation was associated with shorter PFS with EGFR TKI therapy in patients with NSCLC.


The FASEB Journal | 2006

Titanium dioxide nanoparticles induce emphysema-like lung injury in mice

Huei-Wen Chen; Sheng Fang Su; Chiang Ting Chien; Wei Hsiang Lin; Sung-Liang Yu; Cheng-Chung Chou; Jeremy Chen; Pan-Chyr Yang

Titanium dioxide nanoparticles (nanoTiO2) have been widely used as a photocatalyst in air and water cleaning. However, these nanoparticles inhalation can induce pulmonary toxicity and its mechanism is not fully understood. In this study we investigated the pulmonary toxicity of nanoTiO2 and its molecular pathogenesis. The adult male ICR mice were exposed to intratracheal single dose of 0.1 or 0.5 mg nanoTiO2 (19–21 nm) and lung tissues were collected at 3rd day, 1st wk, and 2nd wk for morphometric, microarray gene expression, and pathway analyses. NanoTiO2 can induce pulmonary emphysema, macrophages accumulation, extensive disruption of alveolar septa, type II pneumocyte hyperplasia, and epithelial cell apoptosis. NanoTiO2 induced differential expression of hundreds of genes include activation of pathways involved in cell cycle, apoptosis, chemokines, and complement cascades. In particular, nanoTiO2 up‐regulates placenta growth factor (PlGF) and other chemokines (CXCL1, CXCL5, and CCL3) expressions that may cause pulmonary emphysema and alveolar epithelial cell apoptosis. Cultured human THP‐1 cell‐derived macrophages treated with nanoTiO2 in vitro also resulted in up‐regulations of PlGF, CXCL1, CXCL5, and CCL3. These results indicated that nanoTiO2 can induce severe pulmonary emphysema, which may be caused by activation of PlGF and related inflammatory pathways.—Chen, H‐W., Su, S‐F., Chien, C‐T., Lin, W‐H., Yu, S‐L., Chou, C‐C., Chen, J. J. W., Yang, P. C. Titanium dioxide nanoparticles induce emphysema‐like lung injury in mice. FASEB J. 20, E1732–E1741 (2006)


British Journal of Cancer | 2010

MicroRNA in lung cancer

Po-Cheng Lin; Sung-Liang Yu; Pan-Chyr Yang

MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as endogenous negative gene regulators. Dysfunctions of miRNAs are frequently found in malignancies, including lung cancer. In this review, we summarise the current understanding of miRNAs in lung cancer tumourigenesis, and highlight their potential in overcoming drug resistance, abetting histological sub-classification techniques, and serving as biomarkers for lung cancer risk stratification and outcome prediction.


Cancer Research | 2008

Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1.

Huei-Wen Chen; Jen-Yi Lee; Ji-Ying Huang; Chi-Chung Wang; Wan-Jiun Chen; Sheng-Fang Su; Chia-Wen Huang; Chao-Chi Ho; Jeremy J.W. Chen; Meng-Feng Tsai; Sung-Liang Yu; Pan-Chyr Yang

Curcumin (diferuloylmethane) is an active component of the spice turmeric and has a diversity of antitumor activities. In this study, we found that curcumin can inhibit cancer cell invasion and metastasis through activation of the tumor suppressor DnaJ-like heat shock protein 40 (HLJ1). Human lung adenocarcinoma cells (CL1-5) treated with curcumin (1-20 mumol/L) showed a concentration-dependent reduction in cell migration, invasion, and metastatic ability, and this was associated with increased HLJ1 expression. Knockdown of HLJ1 expression by siRNA was able to reverse the curcumin-induced anti-invasive and antimetastasis effects in vitro and in vivo. The HLJ1 promoter and enhancer in a luciferase reporter assay revealed that curcumin transcriptionally up-regulates HLJ1 expression through an activator protein (AP-1) site within the HLJ1 enhancer. JunD, one of the AP-1 components, was significantly up-regulated by curcumin (1-20 mumol/L) in a concentration- and time-dependent manner. Knockdown of JunD expression could partially reduce the curcumin-induced HLJ1 activation and diminish the anti-invasive effect of curcumin, indicating that JunD would seem to be involved in curcumin-induced HLJ1 expression. Curcumin was able to induce c-Jun NH(2)-kinase (JNK) phosphorylation, whereas the JNK inhibitor (SP-600125) could attenuate curcumin-induced JunD and HLJ1 expression. Activation of HLJ1 by curcumin further leads to up-regulation of E-cadherin and a suppression of cancer cell invasion. Our results show that curcumin induces HLJ1, through activation of the JNK/JunD pathway, and inhibits lung cancer cell invasion and metastasis by modulating E-cadherin expression. This is a novel mechanism and supports the application of curcumin in anti-cancer metastasis therapy.


Nature Communications | 2014

Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling

Wan-Jiun Chen; Chao-Chi Ho; Yih-Leong Chang; Hsuan-Yu Chen; Chih-An Lin; Thai-Yen Ling; Sung-Liang Yu; Shinsheng Yuan; Yu-Ju Louisa Chen; Chien-Yu Lin; Szu-Hua Pan; Han-Yi Elizabeth Chou; Yu-Ju Chen; Gee-Chen Chang; Wen-Cheng Chu; Yee-Ming Lee; Jen-Yi Lee; Pei-Jung Lee; Ker-Chau Li; Huei-Wen Chen; Pan-Chyr Yang

Cancer stem cells (CSCs) are a promising target for treating cancer, yet how CSC plasticity is maintained in vivo is unclear and is difficult to study in vitro. Here we establish a sustainable primary culture of Oct3/4(+)/Nanog(+) lung CSCs fed with CD90(+) cancer-associated fibroblasts (CAFs) to further advance our knowledge of preserving stem cells in the tumour microenvironment. Using transcriptomics we identify the paracrine network by which CAFs enrich CSCs through de-differentiation and reacquisition of stem cell-like properties. Specifically, we find that IGF1R signalling activation in cancer cells in the presence of CAFs expressing IGF-II can induce Nanog expression and promote stemness. Moreover, this paracrine signalling predicts overall and relapse-free survival in stage I non-small cell lung cancer (NSCLC) patients. IGF-II/IGF1R signalling blockade inhibits Nanog expression and attenuates cancer stem cell features. Our data demonstrate that CAFs constitute a supporting niche for cancer stemness, and targeting this paracrine signalling may present a new therapeutic strategy for NSCLC.


Cell Host & Microbe | 2011

Enterovirus-Induced miR-141 Contributes to Shutoff of Host Protein Translation by Targeting the Translation Initiation Factor eIF4E

Bing Ching Ho; Sung-Liang Yu; Jeremy J.W. Chen; Sui-Yuan Chang; Bo-Shiun Yan; Qi Sheng Hong; Sher Singh; Chuan-Liang Kao; Hsuan Yu Chen; Kang-Yi Su; Ker-Chau Li; Chiou Ling Cheng; Hao Wei Cheng; Jen Yi Lee; Chun Nan Lee; Pan-Chyr Yang

Viruses rely on the host translation machinery to complete their life cycles. Picornaviruses use an internal ribosome entry site to initiate cap-independent protein translation and in parallel host cap-dependent translation is shut off. This process is thought to occur primarily via cleavage of host translation initiation factors eIF4GI and eIF4GII by viral proteases. Here we describe another mechanism whereby miR-141 induced upon enterovirus infection targets the cap-dependent translation initiation factor, eIF4E, for shutoff of host protein synthesis. Knockdown of miR-141 reduces viral propagation, and silencing of eIF4E can completely reverse the inhibitory effect of the miR-141 antagomiR on viral propagation. Ectopic expression of miR-141 promotes the switch from cap-dependent to cap-independent translation. Moreover, we identified a transcription factor, EGR1, which is partly responsible for miR-141 induction in response to enterovirus infection. Our results suggest that upregulation of miR-141 upon enterovirus infection can facilitate viral propagation by expediting the translational switch.


American Journal of Respiratory and Critical Care Medicine | 2009

Claudin-1 Is a Metastasis Suppressor and Correlates with Clinical Outcome in Lung Adenocarcinoma

Yu Chih Chao; Szu Hua Pan; Shuenn Chen Yang; Sung-Liang Yu; Ting Fang Che; Chung-Wu Lin; Mu Shiun Tsai; Gee Chen Chang; Che Hsiang Wu; Yi Ying Wu; Yung Chie Lee; Tse-Ming Hong; Pan-Chyr Yang

RATIONALE Claudin (CLDN)-1, a key component of tight junction complexes, was down-regulated in human lung adenocarcinomas. OBJECTIVES To investigate the clinical significance of CLDN1 expression in patients with lung adenocarcinoma and its role in cancer invasion and metastasis. METHODS We examined the CLDN1 mRNA expression in tumor specimens from 64 patients with lung adenocarcinoma and protein expression by immunohistochemistry in an independent cohort of 67 patients with lung adenocarcinoma. CLDN1 functions in cancer cell migration, invasion, and metastatic colonization were studied by overexpression and knockdown of CLDN1. Affymetrix microarrays were performed to identify gene expression changes associated with CLDN1 overexpression. MEASUREMENTS AND MAIN RESULTS We found that low-CLDN1 mRNA expression had shorter overall survival (P = 0.027, log-rank test) in 64 patients with lung adenocarcinoma, and we confirmed by immunohistochemistry that low CLDN1 expression had shorter overall survival (P = 0.024, log-rank test) in an independent cohort of 67 patients with lung adenocarcinoma. Overexpression of CLDN1 inhibited cancer cell dissociation in time-lapse imaging of wound healing, and suppressed cancer cell migration, invasion, and metastasis. Knockdown CLDN1 expression increased cancer cell invasive and metastatic abilities. Affymetrix microarrays identified a panel of genes altered by CLDN1 overexpression. CLDN1 increased expressions of cancer invasion/metastasis suppressors (e.g., connective tissue growth factor [CTGF], thrombospondin 1 [THBS1], deleted in liver cancer 1 [DLC1], occludin [OCLN], zona occludens 1 [ZO-1]) and suppressed expressions of invasion/metastasis enhancers (e.g., secreted phosphoprotein 1 [SPP1], cut-like homeobox 1 [CUTL1], transforming growth factor alpha [TGF-alpha], solute carrier family 2 [faciliated glucose transporter] member 3 [SLC2A3], placental growth factor [PGF]), supporting a role for CLDN1 as an invasion and metastasis suppressor. CONCLUSIONS CLDN1 is a cancer invasion/metastasis suppressor. CLDN1 is also a useful prognostic predictor and potential drug treatment target for patients with lung adenocarcinoma.


British Journal of Pharmacology | 2002

Cyclosporine A regulate oxidative stress‐induced apoptosis in cardiomyocytes: mechanisms via ROS generation, iNOS and Hsp70

Huei-Wen Chen; Chiang Ting Chien; Sung-Liang Yu; Yuan-Teh Lee; Wen-Jone Chen

Previous study suggested that cyclosporine A (CsA) could partially reduce ischaemia/reperfusion‐induced injury in isolated heart, but the mechanism was still unclear. In this study, the possible mechanisms of cyclosporine A in regulating oxidative stress‐induced cardiomyocyte apoptosis were examined. Morphological (cell shrinkage, apoptotic body formation, and DNA fragmentation) and biochemical (annexin‐V staining for exposed phosphatidylserine residues) evidences showed that both hydrogen peroxide (H2O2) and hypoxia/reoxygenation could induce apoptotic change in the embryonal rat heart myoblast‐derived cells (H9c2). These effects were inhibited by pre‐treatment with CsA at concentration of 0.01–1.0 μM for 24 h, but were increased with 10.0 μM CsA. While examining the mechanisms of CsA in protecting cardiomyocyte apoptosis, we found that the collapse of mitochondria membrane potential (ΔΨm) induced by oxidative stress was partially reversed by CsA (0.01–1.0 μM). Compared to the control, CSA at the concentration of 0.1 and 10.0 μM significantly increased the level of intracellular reactive oxygen species (ROS) to 117.2±12.4% and 234.4±9.3%, respectively. Co‐incubating with the antioxidant, ascorbic acid (10.0 μM), could partially reduce the protective effect of CsA (0.01–1.0 μM) and the toxic effect of 10.0 μM CsA. Pre‐treatment with CsA at concentration of 0.01–1.0 μM for 24 h produced up‐regulation of heat shock protein 70 (Hsp 70), inducible nitric oxide synthase (iNOS) and also induced NO production, indicating that these factors might be associated with the cell protective effects of CsA. These results suggest that CsA could protect the oxidative stress‐induced cardiomyocyte apoptosis not only by preventing the loss of ΔΨm in mitochondria, but also through ROS generation, Hsp70, and iNOS up‐regulation.


American Journal of Respiratory and Critical Care Medicine | 2011

Slug Confers Resistance to the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor

Tzu Hua Chang; Meng Feng Tsai; Kang-Yi Su; Shang Gin Wu; Cheng Po Huang; Sung-Liang Yu; Yung Luen Yu; Chou Chin Lan; Chih-Hsin Yang; Shwu Bin Lin; Chin Pyng Wu; Jin-Yuan Shih; Pan-Chyr Yang

RATIONALE Non-small cell lung cancers carrying epidermal growth factor receptor (EGFR) mutations respond well to EGFR tyrosine kinase inhibitors (TKIs), but patients ultimately develop drug resistance and relapse. Although epithelial-mesenchymal transition (EMT) can predict resistance to EGFR TKIs, the molecular mechanisms are still unknown. OBJECTIVES To examine the role of EMT regulators in resistance to gefitinib. METHODS The expression level of EMT regulators in gefitinib-sensitive cells (PC9) and gefitinib-resistant cells (PC9/gef) was determined using quantitative real-time reverse transcription-polymerase chain reaction and Western blot analysis. Molecular manipulations (silencing or overexpression) were performed to investigate the effects of EMT regulators on gefitinib resistance in vitro, and a xenograft mouse model was used for in vivo confirmation. In addition, cancer cells from 44 patients with malignant pleural effusions of lung adenocarcinoma were collected for analysis of EMT regulator mRNA by quantitative real-time reverse transcription-polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS Slug expression, but not that of snail, twist, or zeb-1, was significantly increased in PC9/gef compared with PC9 cells. Slug knockdown in PC9/gef cells reversed resistance to gefitinib, and overexpression of Slug in PC9 cells protected cells from gefitinib-induced apoptosis. Silencing of Slug in gefitinib-resistant cells restored gefitinib-induced apoptosis primarily through Bim up-regulation and activation of caspase-9. Slug enhanced tumor growth in a xenograft mouse model, even with gefitinib treatment. In clinical samples, Slug expression was significantly higher in cancer cells with resistance to EGFR TKIs than in treatment-naive cancer cells. CONCLUSIONS Slug contributes to the resistance to gefitinib and may be a potential therapeutic target for treating resistance to EGFR TKIs.

Collaboration


Dive into the Sung-Liang Yu's collaboration.

Top Co-Authors

Avatar

Pan-Chyr Yang

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Jeremy J.W. Chen

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kang-Yi Su

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Gee-Chen Chang

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Huei-Wen Chen

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing-Ching Ho

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chao-Chi Ho

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Sher Singh

National Taiwan Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge