Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung Min Kang is active.

Publication


Featured researches published by Sung Min Kang.


Angewandte Chemie | 2010

One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating.

Sung Min Kang; Inseong You; Woo Kyung Cho; Hyun Kyong Shon; Tae Geol Lee; Insung S. Choi; Jeffery M. Karp; Haeshin Lee

A bio-inspired approach for superhydrophobic surface modification was investigated. Hydrophilic conversion of the superhydrophobic surface was easily achieved through this method, and the superhydrophobic-hydrophilic alternating surface was generated by the method combined with soft-lithography. The resulting patterned surface showed high water adhesion property in addition to superhydrophobic property.


Journal of the American Chemical Society | 2011

Mussel-inspired encapsulation and functionalization of individual yeast cells.

Sung Ho Yang; Sung Min Kang; Kyung-Bok Lee; Taek Dong Chung; Haeshin Lee; Insung S. Choi

The individual encapsulation of living cells has a great impact on the area of cell-based sensors and devices as well as fundamental studies in cell biology. In this work, living yeast cells were individually encapsulated with functionalizable, artificial polydopamine shells, inspired by an adhesive protein in mussels. Yeast cells maintained their viability within polydopamine, and the cell cycle was controlled by the thickness of the shells. In addition, the artificial shells aided the cell in offering much stronger resistance against foreign aggression, such as lyticase. After formation of the polydopamine shells, the shells were functionalized with streptavidin by utilizing the chemical reactivity of polydopamine, and the functionalized cells were biospecifically immobilized onto the defined surfaces. Our work suggests a biomimetic approach to the encapsulation and functionalization of individual living cells with covalently bonded, artificial shells.


Journal of the American Chemical Society | 2009

Norepinephrine: Material-Independent, Multifunctional Surface Modification Reagent

Sung Min Kang; Junsung Rho; Insung S. Choi; Phillip B. Messersmith; Haeshin Lee

A facile approach for material-independent surface modification using norepinephrine was investigated. pH-induced oxidative polymerization of norepinephrine forms adherent films on vastly different types of material surfaces of noble metals, metal oxides, semiconductors, ceramics, shape-memory alloys, and synthetic polymers. Secondary biochemical functionalizations such as immobilization of proteins and growth of biodegradable polyester on the poly(norepinephrine) films were demonstrated.


Bioconjugate Chemistry | 2011

Enhancement of Blood Compatibility of Poly(urethane) Substrates by Mussel-Inspired Adhesive Heparin Coating

Inseong You; Sung Min Kang; Youngro Byun; Haeshin Lee

Heparin immobilization on surfaces has drawn a great deal of attention because of its potential application in enhancing blood compatibility of various biomedical devices such as catheters, grafts, and stents. Existing methods for the heparin immobilization are based on covalent linkage formation and electrostatic interaction between substrates and heparin molecules. However, complicated multistep procedures and uncontrolled desorption of heparin are limitations of these methods. In this work, we report a new heparin derivative that exhibits robust adhesion on surfaces. The derivative, called hepamine, was prepared via conjugation of dopamine, a mussel-inspired adhesive moiety, onto a heparin backbone. Immersion of poly(urethane) substrates into an aqueous solution of hepamine resulted in robust heparin coating of the poly(urethane), the most widely used polymeric material for blood-contacting medical devices. The hepamine-coated poly(urethane) substrate showed significant inhibition of blood coagulation and platelet adhesion. The use of hepamine for surface modification is advantageous for several reasons: for example, no chemical pretreatment of the substrates is necessary, and surface functionalization is a simple, one-step procedure. Thus, the heparin immobilization method described herein is an excellent alternative approach for the introduction of heparin molecules onto surfaces.


ACS Applied Materials & Interfaces | 2015

Versatile, tannic acid-mediated surface PEGylation for marine antifouling applications.

Suyeob Kim; Taewoo Gim; Sung Min Kang

In this study, we report a facile and versatile approach to the formation of marine antifouling surface coatings. The approach consists of a combined coating of polydopamine (pDA) and tannic acid (TA) and subsequent immobilization of polyethylene glycol (PEG) on solid substrates. TA coating of a pDA-coated surface was carried out using iron(III) coordination chemistry, and PEG was immobilized on the TA-coated surface via hydrogen bond formation. Stainless steel and nylon were successfully modified by this approach, and the resulting substrates were used for marine antifouling applications, in which diatom adhesion was significantly inhibited. Advantageously, this approach allowed marine antifouling coatings to be prepared by a simple immersion process under environmentally friendly conditions.


Chemistry-an Asian Journal | 2014

Reversible Layer‐by‐Layer Deposition on Solid Substrates Inspired by Mussel Byssus Cuticle

Suyeob Kim; Dong Soo Kim; Sung Min Kang

The protective coating on mussel (Mytilus galloprovincialis) byssus has attracted considerable research interest because of its excellent mechanical properties such as hardness and extensibility. These special properties are known to be highly related with specific interactions between mussel foot protein-1 and metal ions. In particular, the complexation between catechols in mfp-1 and iron(III) has been identified as a key interaction. This finding has given opportunities for pursuing promising applications. Herein, we report that emulating the properties of the mussel byssus cuticle provides an important platform for developing reversible layer-by-layer (LbL) deposition, an advanced technique for surface modification. LbL films were constructed on solid substrates by sequential immersion of substrates into solutions containing iron(III) and catecholic compounds. The thickness of the LbL films was effectively controlled by increasing the immersion steps, and the reversibility of the LbL deposition was demonstrated by addition of a chelating agent.


Nanotechnology | 2006

Biomimetic approach to the formation of gold nanoparticle/silica core/shell structures and subsequent bioconjugation

Sung Min Kang; Kyung-Bok Lee; Dong Jin Kim; Insung S. Choi

The encapsulation of individual nanoparticles has gained great attention as a method for both stabilizing nanoparticles and tailoring their surface properties. In particular, the encapsulation of nanoparticles with silica shells is advantageous for bioconjugation and applications to (nano)biotechnology. Herein we report a method for constructing gold nanoparticle (AuNP)/silica core/shell hybrid structures by biomimetic silicification of silicic acids. The procedure consists of surface-initiated, atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) from AuNPs and biomimetic polycondensation of silicic acids by using poly(DMAEMA) as a synthetic counterpart for silaffins that are found in diatoms. The resulting AuNP/silica hybrids were characterized by Fourier transform infrared spectroscopy, energy dispersive x-ray spectroscopy, UV-vis spectroscopy and transmission electron microscopy. In addition, the immobilization of biological ligands onto the hybrids was investigated for potential applications to biotechnology. As a model ligand, biotin was attached onto the AuNP/silica hybrids through substitution reaction and Michael addition reaction, and the attachment was confirmed by fluorescence microscopy after complexation with fluorescein-conjugated streptavidin.


Macromolecular Research | 2009

Bioconjugation of Poly(poly(ethylene glycol) methacrylate)-Coated Iron Oxide Magnetic Nanoparticles for Magnetic Capture of Target Proteins

Sung Min Kang; Insung S. Choi; Kyung Bok Lee; Yong Seong Kim

Chemical modification of magnetic nanoparticles (MNPs) with functional polymers has recently gained a great deal of attention because of the potential application of MNPs toin vivo andin vitro biotechnology. The potential use of MNPs as capturing agents and sensitive biosensors has been intensively investigated because MNPs exhibit good separation-capability and binding-specificity for biomolecules after suitable surface functionalization processes. In this work, we demonstrate an efficient method for the surface modification of MNPs, by combining surface-initiated polymerization and the subsequent conjugation of the biologically active molecules. The polymeric shells of non-biofouling poly(poly(ethylene glycol) methacrylate) (pPEGMA) were introduced onto the surface of MNPs by surface-initiated, atom transfer radical polymerization (SI-ATRP). With biotin as a model of biologically active compounds, the polymeric shells underwent successful post-functionalization via activation of the polymeric shells and bioconjugation of biotin. The resulting MNP hybrids showed a biospecific binding property for streptavidin and could be separated by magnet capture.


Angewandte Chemie | 2016

Cytocompatible Polymer Grafting from Individual Living Cells by Atom-Transfer Radical Polymerization

Ji Yup Kim; Bong-Soo Lee; Jinsu Choi; Beom Jin Kim; Ji Yu Choi; Sung Min Kang; Sung Ho Yang; Insung S. Choi

A cytocompatible method of surface-initiated, activator regenerated by electron transfer, atom transfer radical polymerization (SI-ARGET ATRP) is developed for engineering cell surfaces with synthetic polymers. Dopamine-based ATRP initiators are used for both introducing the ATRP initiator onto chemically complex cell surfaces uniformly (by the material-independent coating property of polydopamine) and protecting the cells from radical attack during polymerization (by the radical-scavenging property of polydopamine). Synthetic polymers are grafted onto the surface of individual yeast cells without significant loss of cell viability, and the uniform and dense grafting is confirmed by various characterization methods including agglutination assay and cell-division studies. This work will provide a strategic approach to the generation of living cell-polymer hybrid structures and open the door to their application in multitude of areas, such as sensor technology, catalysis, theranostics, and cell therapy.


Parasitology | 2007

Characterization of the mitochondrial genome of Diphyllobothrium latum (Cestoda: Pseudophyllidea) - : implications for the phylogeny of eucestodes

Joong Ki Park; Kyu-Heon Kim; Sung Min Kang; Hyeong-Kyu Jeon; J.-H. Kim; D. T. J. Littlewood; Keeseon S. Eom

The complete nucleotide sequence of the mitochondrial genome was determined for the fish tapeworm Diphyllobothrium latum. This genome is 13,608 bp in length and encodes 12 protein-coding genes (but lacks the atp8), 22 transfer RNA (tRNA) and 2 ribosomal RNA (rRNA) genes, corresponding to the gene complement found thus far in other flatworm mitochondrial (mt) DNAs. The gene arrangement of this pseudophyllidean cestode is the same as the 6 cyclophyllidean cestodes characterized to date, with only minor variation in structure among these other genomes; the relative position of trnS2 and trnL1 is switched in Hymenolepis diminuta. Phylogenetic analyses of the concatenated amino acid sequences for 12 protein-coding genes of all complete cestode mtDNAs confirmed taxonomic and previous phylogenetic assessments, with D. latum being a sister taxon to the cyclophyllideans. High nodal support and phylogenetic congruence between different methods suggest that mt genomes may be of utility in resolving ordinal relationships within the cestodes. All species of Diphyllobothrium infect fish-eating vertebrates, and D. latum commonly infects humans through the ingestion of raw, poorly cooked or pickled fish. The complete mitochondrial genome provides a wealth of genetic markers which could be useful for identifying different life-cycle stages and for investigating their population genetics, ecology and epidemiology.

Collaboration


Dive into the Sung Min Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jungkyu K. Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Suyeob Kim

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar

Woo Kyung Cho

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge