Sung-Moo Kim
Kyung Hee University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sung-Moo Kim.
Cancer Letters | 2011
Ji Young Heo; Hyun Jung Kim; Sung-Moo Kim; Kyung-Ran Park; Sang-Yoon Park; Seong Won Kim; Dongwoo Nam; Hyeung-Jin Jang; Seok-Geun Lee; Kyoo Seok Ahn; Sung-Hoon Kim; Bum Sang Shim; Seung-Hoon Choi; Kwang Seok Ahn
Even though embelin, an inhibitor of the XIAP, is known to exhibit anti-inflammatory and anti-cancer activities, very little is known about its mechanism of action. Here, we investigated whether embelin mediates its effect through interference with the signal transducer and activator of transcription 3 (STAT3) pathway. We found that embelin inhibited constitutive STAT3 activation in a variety of human cancer cell lines such as U266, DU-145, and SCC4 cells. The suppression of STAT3 was mediated through inhibition of the activation of JAK2 and c-Src. Pervanadate treatment also reversed the embelin-induced down-regulation of STAT3, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that embelin-induced the expression of the tyrosine phosphatase PTEN and deletion of the PTEN gene by small interfering RNA abolished the ability of embelin to inhibit STAT3 activation. Besides, embelin failed to suppress STAT3 activation in PTEN-null PC3 cells, thus indicating that the inhibitory effect of embelin on STAT3 is PTEN-dependent. Embelin down-regulated the expression of STAT3-regulated gene products; this correlated with the suppression of cell proliferation and invasion, and the induction of apoptosis through the activation of caspase-3. Overall, our results indicate that the anti-inflammatory and anti-cancer activities previously assigned to embelin may be mediated in part through the suppression of the STAT3 pathway.
European Journal of Pharmacology | 2012
Kyungjin Lee; Jeong-Sook Lee; Hyeung-Jin Jang; Sung-Moo Kim; Mun Seog Chang; Si Hyung Park; Kwan Su Kim; Jinhyun Bae; Jae-Woo Park; Bumjun Lee; Ho-Young Choi; Chang-Hyun Jeong; Youngmin Bu
Chlorogenic acid (CGA) has been reported to have various beneficial effects on the cardiovascular and central nervous systems. The purpose of the current study was to investigate whether CGA has protective effects against cerebral ischemia and whether these effects are due to modification of brain edema-related vascular factors. In a rat model of transient middle cerebral artery occlusion (MCAo, 2h of occlusion followed by 22 h of reperfusion), we measured infarct volume and performed behavioral test to evaluate the effects of CGA on brain damage and sensory-motor functional deficits. Brain water content and Evans blue extravasation were measured to evaluate brain edema and blood brain barrier (BBB) damage. Lipid peroxidation (LPO) and the expressions and activities of matrix metalloproteinase (MMP)-2 and MMP-9 were measured to investigate the mechanisms of action. Intraperitoneal injection of CGA (3, 10, and 30 mg/kg) at 0 h and 2h after MCAo dose-dependently reduced infarct volume and sensory-motor functional deficits. It also reduced brain water content and Evans blue extravasation. Mechanistically, CGA reduced LPO and MMPs expressions and activities. These results suggest that CGA reduces brain damage, BBB damage and brain edema by radical scavenging activity and the inhibitory effects on MMP-2 and MMP-9.
Journal of Medicinal Food | 2012
Nae Hyung Ryu; Kyung-Ran Park; Sung-Moo Kim; Hyung-Mun Yun; Dongwoo Nam; Seok-Geun Lee; Hyeung-Jin Jang; Kyoo Seok Ahn; Sung-Hoon Kim; Bum Sang Shim; Seung-Hoon Choi; Ashik Mosaddik; Somi K. Cho; Kwang Seok Ahn
This study was carried out to evaluate the anticancer effects of guava leaf extracts and its fractions. The chemical compositions of the active extracts were also determined. In the present study, we set out to determine whether the anticancer effects of guava leaves are linked with their ability to suppress constitutive AKT/mammalian target of rapamycin (mTOR)/ribosomal p70 S6 kinase (S6K1) and mitogen-activated protein kinase (MAPK) activation pathways in human prostate cancer cells. We found that guava leaf hexane fraction (GHF) was the most potent inducer of cytotoxic and apoptotic effects in PC-3 cells. The molecular mechanism or mechanisms of GHF apoptotic potential were correlated with the suppression of AKT/mTOR/S6K1 and MAPK signaling pathways. This effect of GHF correlated with down-regulation of various proteins that mediate cell proliferation, cell survival, metastasis, and angiogenesis. Analysis of GHF by gas chromatography and gas chromatography-mass spectrometry tentatively identified 60 compounds, including β-eudesmol (11.98%), α-copaene (7.97%), phytol (7.95%), α-patchoulene (3.76%), β-caryophyllene oxide (CPO) (3.63%), caryophylla-3(15),7(14)-dien-6-ol (2.68%), (E)-methyl isoeugenol (1.90%), α-terpineol (1.76%), and octadecane (1.23%). Besides GHF, CPO, but not phytol, also inhibited the AKT/mTOR/S6K1 signaling pathway and induced apoptosis in prostate cancer cells. Overall, these findings suggest that guava leaves can interfere with multiple signaling cascades linked with tumorigenesis and provide a source of potential therapeutic compounds for both the prevention and treatment of cancer.
Planta Medica | 2011
Jung Il Lee; Young Wan Ha; Tae Won Choi; Hyun Jung Kim; Sung-Moo Kim; Hyeung-Jin Jang; Jung-Hye Choi; Man Ho Choi; Bong Chul Chung; Gautam Sethi; Sung-Hoon Kim; Kyoo Seok Ahn; Seung-Hoon Choi; Bum Sang Shim; Kwang Seok Ahn
Panax ginseng has been reported to have cancer-preventive properties and, through anti-inflammatory, antioxidant, and pro-apoptotic mechanisms, to influence gene expression. However, the comparison of Korean white ginseng (WG) and red ginseng (RG) in their apoptotic effects and the identification of the selective cellular uptake of the ginsenosides in human breast cancer cells have not yet been fully understood. In the present study, the relative nonpolar and protopanaxadiol (PPD) class ginsenosides exhibited more cytotoxic and efficient cellular uptake on MCF-7 cells compared with the relative polar and protopanaxatriol (PPT) class compounds. PPD class ginsenosides were present in RG in a 2.5 times higher concentration as compared to WG, while PPT class ginsenosides were only present in WG. Thus, RG exerted more potent cytotoxicity than WG against MCF-7 and MDA-MB231 cells. RG also increased the sub-G1 DNA contents of the cell cycle and Annexin V-positive apoptotic bodies undergoing apoptosis through the caspase-3 activation in MCF-7 cells. In addition, RG downregulated the proliferative and anti-apoptotic gene products and potentiated paclitaxel-induced apoptosis in MCF-7 cells. Overall, RG contained a higher concentration of PPD class ginsenosides as compared to WG; the greater cellular uptake of PPD resulted in more substantial antiproliferative activity in human breast cancer cells.
Cancer Letters | 2014
Sung-Moo Kim; Jong Hyun Lee; Gautam Sethi; Chulwon Kim; Seung Ho Baek; Dongwoo Nam; Wonseok Chung; Sung-Hoon Kim; Bum Sang Shim; Kwang Seok Ahn
Persistent activation of signal transducers and activator of transcription 3 (STAT3) has been closely related to growth, survival, proliferation, metastasis, and angiogenesis of various cancer cells, and thus its inhibition can be considered a potential therapeutic strategy. In this study, we investigated the role of bergamottin (BGM) obtained from grapefruit juice in abrogating the constitutive STAT3 activation in multiple myeloma (MM) cells. This suppression was mediated through the inhibition of phosphorylation of Janus-activated kinase (JAK) 1/2 and c-Src. Pervanadate reversed the BGM induced down-regulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase (PTP). Furthermore, BGM induced the expression of the tyrosine phosphatase SHP-1, and gene silencing of the SHP-1 by small interfering RNA abolished the ability of BGM to inhibit STAT3 activation, suggesting a critical role for SHP-1 in the action of BGM. BGM also downregulated the expression of STAT3-regulated gene products such as COX-2, VEGF, cyclin D1, survivin, IAP-1, Bcl-2, and Bcl-xl in MM cells. This correlated with induction of substantial apoptosis as indicated by an increase in the sub-G1 cell population and caspase-3 induced PARP cleavage. Also, this agent significantly potentiated the apoptotic effects of bortezomib and thalidomide in MM cells. Overall, these results suggest that BGM is a novel blocker of STAT3 activation pathway thus may have a potential in therapy of MM and other cancers.
The Prostate | 2013
Seong Won Kim; Sung-Moo Kim; Hang Bae; Dongwoo Nam; Junhee Lee; Seok-Geun Lee; Bum Sang Shim; Sung-Hoon Kim; Kyoo Seok Ahn; Seung-Hoon Choi; Gautam Sethi; Kwang Seok Ahn
Akt/mTOR/S6K1 signaling cascades play an important role both in the survival and proliferation of tumor cells.
Phytotherapy Research | 2013
Chulwon Kim; Moo-Chang Kim; Sung-Moo Kim; Dongwoo Nam; Seung-Hoon Choi; Sung-Hoon Kim; Kyoo Seok Ahn; Eun Ha Lee; Sang Hoon Jung; Kwang Seok Ahn
Chrysanthemum indicum L. has been shown to possess antiinflammatory and anticancer activities, but its molecular targets/pathways are not yet fully understood in tumor cells. In the present study, the potential effects of C. indicum on signal transducer and activator of transcription 3 (STAT3) signaling pathway in different tumor cells were examined. The solvent fractions (hexane, CH2Cl2, EtOAc, and BuOH,) were obtained from a crude extract (80% EOH extract) of C. indicum. The methylene chloride fraction of C. indicum (MCI) exhibited strong cytotoxic activity as compared with the other fractions and clearly suppressed constitutive STAT3 activation against both DU145 and U266 cells, but not MDA‐MB‐231 cells. The suppression of constitutive STAT3 activation by MCI is associated with blocking upstream JAK1 and JAK2, but not Src. MCI downregulated the expression of STAT3‐regulated gene products; this is correlated with the accumulation of the cell cycle at sub‐G1 phase, the induction of caspase‐3 activation, and apoptosis. Moreover, the major components of the MCI were bioactive compounds such as sudachitin, hesperetin, chrysoeriol, and acacetin. Sudachitin, chrysoeriol, and acacetin also exerted significantly cytotoxicity, clearly suppressed constitutive STAT3 activation, and induced apoptosis, although hesperetin did not show any significant effect in DU145 cells. Overall, our results demonstrate that MCI could induce apoptosis through inhibition of the JAK1/2 and STAT3 signaling pathways. Copyright
Phytotherapy Research | 2014
Sung-Moo Kim; Jeong Ha Park; Ki Dong Kim; Dongwoo Nam; Bum Sang Shim; Sung-Hoon Kim; Kyoo Seok Ahn; Seung-Hoon Choi; Kwang Seok Ahn
The oncogenic PI3K/Akt/mammalian target of rapamycin (mTOR) signaling axis and its downstream effector, the ribosomal protein S6 kinase 1 (S6K1) play a key role in mediating cell survival in various tumor cells. Here, we investigated the effects of brassinin (BSN), a phytoalexin first identified as a constituent of cabbage, on the PI3K/Akt/mTOR/S6K1 activation, cellular proliferation, and apoptosis in PC‐3 human prostate cancer. BSN exerted a significant dose‐dependent cytotoxicity and reduced constitutive phosphorylation of Akt against androgen‐independent PC‐3 cells as compared to androgen‐dependent LNCaP cells. Moreover, knockdown of androgen receptor (AR) by small interfering RNA enhanced the potential effect of BSN on induction of apoptosis in LNCaP cells. BSN clearly suppressed the constitutive activation of PI3K/Akt/mTOR/S6K1 signaling cascade, which correlated with the induction of apoptosis as characterized by accumulation of cells in subG1 phase, positive Annexin V binding, TUNEL staining, loss of mitochondrial membrane potential, down‐regulation of antiapoptotic and proliferative proteins, activation of caspase‐3, and cleavage of PARP. Additionally, BSN could block broad‐spectrum inhibition of PI3K/Akt/mTOR/S6K1 axes, and aberrant Akt activation by pcDNA3‐myr‐HA‐Akt1 plasmid could not prevent the observed suppressive effect of BSN on constitutive mTOR activation. Finally, overexpression of Bcl‐2 also attenuated BSN‐mediated apoptosis in PC‐3 cells. Taken together, our findings suggest that BSN can interfere with multiple signaling cascades involved in tumorigenesis and might be provided as a potential therapeutic candidate for both the prevention and treatment of prostate cancer. Copyright
Immunopharmacology and Immunotoxicology | 2012
Sooho Ok; Sung-Moo Kim; Chulwon Kim; Dongwoo Nam; Bum Sang Shim; Sung-Hoon Kim; Kyoo Seok Ahn; Seung-Hoon Choi; Kwang Seok Ahn
Emodin (ED), an anthraquinone derivative, has been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, impede metastasis, and enhance chemotherapy. However, the detailed mechanism of ED related to the regulation of CXC chemokine receptor-4 (CXCR4) gene expression that affects cellular migration and invasion in prostate and lung cancer cells are not fully understood. Recent evidence indicates that the CXCR4/CXCL12 axis is involved in promoting invasion and metastasis in tumors. Thus, novel agents that can downregulate CXCR4 expression have therapeutic potential in repressing cancer metastasis. Among ED and its derivatives, it is found that ED downregulated the expression of both CXCR4 and HER2 without affecting cell viability in tumor cells. The suppression of CXCR4 expression by ED was found to correlate with the inhibition of CXCL12-induced migration and invasion of both DU145 and A549 cells. Besides, neither proteasome inhibition nor lysosomal stabilization had any effect on ED-induced decrease in CXCR4 expression. The basic molecular mechanisms unveiled that the downregulation of CXCR4 was at the transcriptional level, as indicated by downregulation of mRNA expression and suppression of NF-κB activation. Overall, our findings suggest that ED is a novel blocker of CXCR4 expression and, thus, has enormous potential as a powerful therapeutic agent for metastatic cancer.
Pharmaceutical Biology | 2012
Seung Ho Baek; Sung-Moo Kim; Dongwoo Nam; Junhee Lee; Kyoo Seok Ahn; Seung-Hoon Choi; Sung-Hoon Kim; Bum Sang Shim; Il-Moo Chang; Kwang Seok Ahn
Context: Nobiletin is one of the citrus bioflavonoids and can be found in citrus fruits such as lemons, oranges, tangerines, and grapefruits. The most studied properties of nobiletin are its anti-inflammatory and anticancer activities. Objective: The exact mechanisms of how nobiletin inhibits tumor metastasis and invasion are still not fully understood. In this study, we screened various natural compounds to down-modulate the CXC chemokine receptor-4 (CXCR4) and matrix metallopeptidase-9 (MMP-9). Materials and methods: The effect of nobiletin on the constitutive expressions of CXCR4 and MMP-9, MMP-9 enzymatic activity, associated nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation, and tumor cell invasion in human breast cancer cells was investigated. CXCR4 and MMP-9 expression were evaluated via reverse transcription polymerase chain reaction (RT-PCR) and western blotting. NF-κB activation was also evaluated by electrophoretic mobility shift assay (EMSA). In addition, the antimetastatic effects of nobiletin were determined by gelatin zymography and invasion assay. Results: Nobiletin down-regulated both the constitutive expressions of CXCR4 and MMP-9 in human breast cancer cells with IC50 values of 32 and 24 µM, respectively. Nobiletin also suppressed MMP-9 enzymatic activity and tumor cell invasion under noncytotoxic concentrations. Neither proteasome inhibition nor lysosomal stabilization had any effect on the nobiletin-induced decrease in CXCR4 expression. A detailed study of the underlying molecular mechanisms revealed that the regulation of the down-regulation of CXCR4 and MMP-9 were at the transcriptional level, as indicated by the down-regulation of mRNA expression and the suppression of the constitutive NF-κB and MAPKs activation. Discussion and conclusion: Our results indicate, for the first time, that nobiletin is a novel blocker of CXCR4 and MMP-9 expressions and thus has the potential to suppress metastasis of breast cancer.