Sung-Suk Suh
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sung-Suk Suh.
Cancer Cell | 2009
Michela Garofalo; Gianpiero Di Leva; Giulia Romano; Gerard J. Nuovo; Sung-Suk Suh; Apollinaire Ngankeu; Cristian Taccioli; Flavia Pichiorri; Hansjuerg Alder; Paola Secchiero; Pierluigi Gasparini; Arianna Gonelli; Stefan Costinean; Mario Acunzo; Gerolama Condorelli; Carlo M. Croce
Lung and liver cancers are among the most deadly types of cancer. Despite improvements in treatment over the past few decades, patient survival remains poor, underlining the need for development of targeted therapies. MicroRNAs represent a class of small RNAs frequently deregulated in human malignancies. We now report that miR-221&222 are overexpressed in aggressive non-small cell lung cancer and hepatocarcinoma cells, as compared with less invasive and/or normal lung and liver cells. We show that miR-221&222, by targeting PTEN and TIMP3 tumor suppressors, induce TRAIL resistance and enhance cellular migration through the activation of the AKT pathway and metallopeptidases. Finally, we demonstrate that the MET oncogene is involved in miR-221&222 activation through the c-Jun transcription factor.
Journal of Biological Chemistry | 2008
Sumire Fujiwara; Lei Wang; Linqu Han; Sung-Suk Suh; Patrice A. Salomé; C. Robertson McClung; David E. Somers
The circadian clock controls the period, phasing, and amplitude of processes that oscillate with a near 24-h rhythm. One core group of clock components in Arabidopsis that controls the pace of the central oscillator is comprised of five PRR (pseudo-response regulator) proteins whose biochemical function in the clock remains unclear. Peak expression of TOC1 (timing of cab expression 1)/PRR1, PRR3, PRR5, PRR7, and PRR9 are each phased differently over the course of the day and loss of any PRR protein alters period. Here we show that, together with TOC1, PRR5 is the only other likely proteolytic substrate of the E3 ubiquitin ligase SCFZTL within this PRR family. We further demonstrate a functional significance for the phosphorylated forms of PRR5, TOC1, and PRR3. Each PRR protein examined is nuclear-localized and is differentially phosphorylated over the circadian cycle. The more highly phosphorylated forms of PRR5 and TOC1 interact best with the F-box protein ZTL (ZEITLUPE), suggesting a mechanism to modulate their proteolysis. In vivo degradation of both PRR5 and ZTL is inhibited by blue light, likely the result of blue light photoperception by ZTL. TOC1 and PRR3 interact in vivo and phosphorylation of both is necessary for their optimal binding in vitro. Additionally, because PRR3 and ZTL both interact with TOC1 in vivo via the TOC1 N terminus, taken together these data suggest that the TOC1/PRR3 phosphorylation-dependent interaction may protect TOC1 from ZTL-mediated degradation, resulting in an enhanced amplitude of TOC1 cycling.
Cancer Research | 2011
Michal Cohen; Asaf Shilo; Sung-Suk Suh; Arianna Bakàcs; Luigi Coppola; Rotem Karni
The process of alternative splicing is widely misregulated in cancer, but the contribution of splicing regulators to cancer development is largely unknown. In this study, we found that the splicing factor hnRNP A2/B1 is overexpressed in glioblastomas and is correlated with poor prognosis. Conversely, patients who harbor deletions of the HNRNPA2B1 gene show better prognosis than average. Knockdown of hnRNP A2/B1 in glioblastoma cells inhibited tumor formation in mice. In contrast, overexpression of hnRNP A2/B1 in immortal cells led to malignant transformation, suggesting that HNRNPA2B1 is a putative proto-oncogene. We then identified several tumor suppressors and oncogenes that are regulated by HNRNPA2B1, among them are c-FLIP, BIN1, and WWOX, and the proto-oncogene RON. Knockdown of RON inhibited hnRNP A2/B1 mediated transformation, which implied that RON is one of the mediators of HNRNPA2B1 oncogenic activity. Together, our results indicate that HNRNPA2B1 is a novel oncogene in glioblastoma and a potential new target for glioblastoma therapy.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Sung-Suk Suh; Ji Young Yoo; Gerard J. Nuovo; Young Jun Jeon; Seokho Kim; Tae Jin Lee; Taewan Kim; Arianna Bakàcs; Hansjuerg Alder; Balveen Kaur; Rami I. Aqeilan; Flavia Pichiorri; Carlo M. Croce
MicroRNAs (miRNAs) are increasingly implicated in regulating cancer initiation and progression. In this study, two miRNAs, miR-25 and -32, are identified as p53-repressed miRNAs by p53-dependent negative regulation of their transcriptional regulators, E2F1 and MYC. However, miR-25 and -32 result in p53 accumulation by directly targeting Mdm2 and TSC1, which are negative regulators of p53 and the mTOR (mammalian target of rapamycin) pathway, respectively, leading to inhibition of cellular proliferation through cell cycle arrest. Thus, there is a recurrent autoregulatory circuit involving expression of p53, E2F1, and MYC to regulate the expression of miR-25 and -32, which are miRNAs that, in turn, control p53 accumulation. Significantly, overexpression of transfected miR-25 and -32 in glioblastoma multiforme cells inhibited growth of the glioblastoma multiforme cells in mouse brain in vivo. The results define miR-25 and -32 as positive regulators of p53, underscoring their role in tumorigenesis in glioblastoma.
Future Oncology | 2008
Flavia Pichiorri; Tiziana Palumbo; Sung-Suk Suh; Hiroshi Okamura; Francesco Trapasso; Hideshi Ishii; Kay Huebner; Carlo M. Croce
Environmental agents induce intragenic alterations in the FRA3B/FHIT chromosome fragile site, resulting in fragile FHIT allele loss early in cancer development. Fhit knockout mice are predisposed to tumor development and Fhit gene therapy reduces tumor burden. Repair-deficient cancers are likely to be Fhit-deficient and Fhit-deficient cells show enhanced resistance to ultraviolet C, mitomycin C, camptothecin and oxidative stress-induced cell killing. Loss of Fhit leads to alterations in the DNA damage response checkpoint and contributes to DNA instability. Hsp60/Hsp10 are Fhit interactors, suggesting a direct role for Fhit in stress responses. Fhit also interacts with and stabilizes ferrodoxin reductase (Fdxr), a mitochondrial flavoprotein that transfers electrons from NADPH to cytochrome P450, suggesting a role for Fhit in the modulation of reactive oxygen species production and of genomic damage.
Marine Drugs | 2014
Sung-Suk Suh; Jinik Hwang; Mirye Park; Hyo Hyun Seo; Hyoung-Shik Kim; Jeong Hun Lee; Sang Hyun Moh; Taek-Kyun Lee
Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells.
Journal of Biological Chemistry | 2009
Flavia Pichiorri; Hiroshi Okumura; Tatsuya Nakamura; Preston N. Garrison; Pierluigi Gasparini; Sung-Suk Suh; Teresa Druck; Kelly A. McCorkell; Larry D. Barnes; Carlo M. Croce; Kay Huebner
We have previously shown that Fhit tumor suppressor protein interacts with Hsp60 chaperone machinery and ferredoxin reductase (Fdxr) protein. Fhit-effector interactions are associated with a Fhit-dependent increase in Fdxr stability, followed by generation of reactive oxygen species and apoptosis induction under conditions of oxidative stress. To define Fhit structural features that affect interactions, downstream signaling, and biological outcomes, we used cancer cells expressing Fhit mutants with amino acid substitutions that alter enzymatic activity, enzyme substrate binding, or phosphorylation at tyrosine 114. Gastric cancer cell clones stably expressing mutants that do not bind substrate or cannot be phosphorylated showed decreased binding to Hsp60 and Fdxr and reduced mitochondrial localization. Expression of Fhit or mutants that bind interactor proteins results in oxidative damage and accumulation of cells in G2/M or sub-G1 fractions after peroxide treatment; noninteracting mutants are defective in these biological effects. Gastric cancer clones expressing noncomplexing Fhit mutants show reduction of Fhit tumor suppressor activity, confirming that substrate binding, interaction with heat shock proteins, mitochondrial localization, and interaction with Fdxr are important for Fhit tumor suppressor function.
PLOS ONE | 2015
Sung-Suk Suh; Mirye Park; Jinik Hwang; Eui-Joon Kil; Seung Won Jung; Sukchan Lee; Taek-Kyun Lee
High-resolution 16S rRNA tag pyrosequencing was used to obtain seasonal snapshots of the bacterial diversity and community structure at two locations in Gosung Bay (South Sea, Korea) over a one year period. Seasonal sampling from the water column at each site revealed highly diverse bacterial communities containing up to 900 estimated Operational Taxonomic Units (OTUs). The Alphaproteobacteria and Gammaproteobacteria were the most abundant groups, and the most frequently recorded OTUs were members of Pelagibacter and Glaciecola. In particular, it was observed that Arcobacter, a genus of the Epsilonproteobacteria, dominated during summer. In addition, Psedoalteromonadaceae, Vibrionaceae and SAR11-1 were predominant members of the OTUs found in all sampling seasons. Environmental factors significantly influenced the bacterial community structure among season, with the phosphate and nitrate concentrations contributing strongly to the spatial distribution of the Alphaproteobacteria; the Gammaproteobacteria, Flavobacteria, and Actinobacteria all showed marked negative correlations with all measured nutrients, particularly silicon dioxide and chlorophyll-a. The results suggest that seasonal changes in environmental variables contribute to the dynamic structure of the bacterial community in the study area.
Asian Pacific Journal of Tropical Medicine | 2014
Sung-Suk Suh; Jinik Hwang; Mirye Park; Heung-Sik Park; Taek-Kyun Lee
OBJECTIVE To find out and compare the in vitro antioxidant and tyrosinase inhibitory activities of two species of mangrove plants. METHODS Mangrove samples were harvested at the shoreline on the island of Weno, Chuuk State in Micronesia. The phenol content, antioxidant activity (based on DPPH-free radical scavenging) and tyrosinase inhibitory activity in different tissues (leaves, barks and roots) of Rhizophora stylosa (R. stylosa) and Sonneratia alba (S. alba), collected from the island of Weno. RESULTS Total phenol content ranged from 4.87 to 11.96 mg per g of freeze dried samples. The highest antioxidant activity was observed in R. stylosa bark (85.5%). The highest tyrosinase inhibitory activity was found in S. alba bark. Also, total phenol content and antioxidant activity were higher in methanol extracts than in aqueous extracts. CONCLUSIONS Taken together, the results of this study proved that mangroves can be excellent sources of antioxidant compounds.
Asian Pacific Journal of Tropical Medicine | 2015
Sung-Suk Suh; So Jung Kim; Jinik Hwang; Mirye Park; Taek-Kyun Lee; Eui-Joon Kil; Sukchan Lee
OBJECTIVE To screen the fatty acid (FA) composition of 20 marine microalgae species, including seven Diophyceae, six Bacillariophyceae, four Chlorophyceae, two Haptophyceae and one Raphidophyceae species. METHODS Microalgal cells cultured at the Korea Institute of Ocean Science & Technology were harvested during the late exponential growth phase and the FA composition analyzed. RESULTS The FA composition of microalgae was species-specific. For example, seven different species of Dinophyceae were composed primarily of C14:0, C16:0, C18:0, C20:4n-6, C20:5n-3 and C22:6n-3, while C14:0, C16:0, C16:1, C18:0, C20:5n-3 and C22:6n-3 were abundant FAs in six species of Bacillariophyceae. In addition, four Chlorophyceae, two Haptophyceae and one Raphidophyceae species all contained a high degree of C16:1n-7 [(9.28-34.91)% and (34.48-35.04)%], C14:0 [(13.34-25.96)%] and [(26.69-28.24)%], and C16:0 [(5.89-29.15)%] and [(5.70-16.81)%]. Several factors contribute to the nutritional value of microalgae, including the polyunsaturated FA content and n-3 to n-6 FA ratio, which could be used to assess the nutritional quality of microalgae. CONCLUSIONS This study is the first comprehensive assessment of the FA composition and nutritional value of microalgae species in South Korea, and identifies the potential utility of FAs as species-specific biomarkers.